Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Article in English | MEDLINE | ID: mdl-36981708

ABSTRACT

Voluntary drive of the exercising muscle is usually assessed with the interpolated twitch technique (ITT), using paired supramaximal electrical stimuli. The aim of this study was to directly compare voluntary activation (VA) of the quadriceps muscle (QM) measured with the ITT, using paired and triple electrical stimuli during maximal voluntary isometric contraction (MVIC). In addition, perceived discomfort was compared with the use of paired and triple electrical stimuli during ITT. Ten healthy participants (23.6 ± 1.6 years) were included. They performed four MVIC, with paired or triple stimuli, in random order. MVIC torque, superimposed evoked torque, evoked torque at rest, VA, and visual analogue scale for pain (VAS-pain), were analysed. The amplitude of the triplet-evoked torque was higher than doublet-evoked torque, i.e., the signal-to-noise ratio increased. However, the differences between the estimation of VA with paired and triple stimuli were not significant (p = 0.136). Triple stimuli yielded higher VAS-pain scores than paired stimuli (p = 0.016). The limits of agreement for the VA using the Bland-Altman method were 7.66/0.629. It seems that the use of additional electrical stimuli is not a recommended solution for the evaluation of VA, because the advantages (i.e., better signal-to-noise ratio) do not outweigh the disadvantages (i.e., an increase in pain).


Subject(s)
Isometric Contraction , Quadriceps Muscle , Humans , Electromyography , Exercise , Isometric Contraction/physiology , Muscle, Skeletal/physiology , Pain/etiology , Quadriceps Muscle/physiology , Torque
2.
Int J Sports Physiol Perform ; 18(3): 300-305, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36754060

ABSTRACT

PURPOSE: Previous research has shown that maximal oxygen uptake (VO2max) significantly influences performance in trail-running races up to 120 km but not beyond. Similarly, the influence of running economy on performance in ultratrail remains unclear. The aim of our study was, therefore, to determine the physiological predictors of performance in a 166-km trail-running race. METHODS: Thirty-three experienced trail runners visited the laboratory 4 to 8 weeks before the race to undergo physiological testing including an incremental treadmill test and strength assessments. Correlations and regression analyses were used to determine the physiological variables related to performance. RESULTS: Average finishing time was 37:33 (5:52) hours. Performance correlated significantly with VO2max (r = -.724, P < .001), velocity at VO2max (r = -.813, P < .001), lactate turn point expressed as percentage of VO2max (r = -.510, P = .018), cost of running (r = -.560, P = .008), and body fat percentage (r = .527, P = .012) but was not related to isometric strength. Regression analysis showed that velocity at VO2max predicted 65% of the variability in performance (P < .001), while a model combining VO2max and cost of running combined predicted 62% of the variability (P = .008). CONCLUSION: This is the first study to show that VO2max and velocity at VO2max are significant predictors of performance in a 166-km trail-running race. This suggests that ultratrail runners should focus on the development of these 2 qualities to optimize their race performance.


Subject(s)
Oxygen Consumption , Running , Humans , Oxygen Consumption/physiology , Running/physiology , Lactic Acid , Exercise Test , Regression Analysis
3.
Front Physiol ; 13: 861927, 2022.
Article in English | MEDLINE | ID: mdl-35547581

ABSTRACT

The aim of the study was to test whether ascending to a moderate real altitude affects motoneuron pool excitability at rest, as expressed by a change in the H-reflex amplitude, and also to elucidate whether a possible alteration in the motoneuron pool excitability could be reflected in the execution of lower-body concentric explosive (squat jump; SJ) and fast eccentric-concentric (drop jump; DJ) muscle actions. Fifteen participants performed four experimental sessions that consisted of the combination of two real altitude conditions [low altitude (low altitude, 690 m), high altitude (higher altitude, 2,320 m)] and two testing procedures (H-reflex and vertical jumps). Participants were tested on each testing day at 8, 11, 14 and 17 h. The only significant difference (p < 0.05) detected for the H-reflex was the higher H-reflex response (25.6%) obtained 15 min after arrival at altitude compared to baseline measurement. In terms of motor behavior, DJ height was the only variable that showed a significant interaction between altitude conditions (LA and HA) and time of measurement (8, 11, 14 and 17 h) as DJ height increased more during successive measurements at HA compared to LA. The only significant difference between the LA and HA conditions was observed for DJ height at 17 h which was higher for the HA condition (p = 0.04, ES = 0.41). Although an increased H-reflex response was detected after a brief (15-20 min) exposure to real altitude, the effect on motorneuron pool excitability could not be confirmed since no significant changes in the H-reflex were detected when comparing LA and HA. On the other hand, the positive effect of altitude on DJ performance was accentuated after 6 h of exposure.

4.
J Strength Cond Res ; 36(4): 1111-1119, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-32235239

ABSTRACT

ABSTRACT: Tomazin, K, Strojnik, V, Feriche, B, Garcia Ramos, A, Strumbelj, B, and Stirn, I. Neuromuscular adaptations in elite swimmers during concurrent strength and endurance training at low and moderate altitudes. J Strength Cond Res 36(4): 1111-1119, 2022-This study evaluated neuromuscular adaptations in elite swimmers during concurrent strength and endurance training (SET) at low (295 m) and moderate (2,320 m) altitudes. Sixteen elite swimmers took part in a 3-week SET during a general preparation phase. All neuromuscular tests were performed a week before and after a SET. In posttraining, maximal knee isometric torque (TMVC) and soleus H-reflex remained statistically unchanged for sea-level (SL) and for altitude (AL) training. Rate of torque development (RTD) decreased post-SL (-14.5%; p < 0.01) but not post-AL (-4.7%; p > 0.05) training. Vastus lateralis electromyographic (EMG) activity during RTD decreased post-SL (-17.0%; P = 0.05) but not post-AL (4.8%; p > 0.05) training. Quadriceps twitch torque (TTW) significantly increased post-AL (12.1%; p < 0.01) but not post-SL (-1.0%; p > 0.05; training × altitude: F1,15 = 12.4; p < 0.01) training. Quadriceps twitch contraction time and M-wave amplitude remained statistically unchanged post-SL and post-AL training. After SL training, increment in TMVC was accompanied with increment in vastus lateralis EMG (R = 0.76; p < 0.01) and TTW (R = 0.48; p < 0.06). Posttraining in AL, increment in TMVC was accompanied with increment in TTW (R = 0.54; p < 0.05). Strength and endurance training at altitude seems to prompt adaptations in twitch contractile properties. In contrast, SET performed at SL may hamper the magnitude of neural adaptations to strength training, particularly during rapid voluntary contractions. In conclusion, SET at AL might benefit muscular adaptations in swimmers compared with training at SL.


Subject(s)
Endurance Training , Resistance Training , Adaptation, Physiological , Altitude , Electromyography , Humans , Isometric Contraction , Muscle Strength , Muscle, Skeletal
5.
Article in English | MEDLINE | ID: mdl-34202491

ABSTRACT

The aim of this study was to investigate neuromuscular adaptations in elite judo athletes after three weeks of power-oriented strength training at terrestrial altitude (2320 m). Nineteen men were assigned to altitude training (AL) (22.1 ± 2.3 years) and sea level training (SL) (22.6 ± 4.1 years). Neuromuscular assessment consisted of: (1) maximal isometric knee extensor (KE) torque, (2) KE rate of torque development (RTD), (3) quadriceps activity and voluntary activation, (4) soleus H-reflex, (5) quadriceps single (TTW) and double twitch torque (TDB100) and contraction time (CTTW). There were no significant differences between groups at baseline for any of the observed parameters. Significant differences were found between groups in terms of change in RTD (p = 0.04). Cohen's d showed a positive significant effect (0.43) in the SL group and a negative significant effect (-0.58) in the AL group. The difference between groups in changes in CTTW as a function of altitude was on the edge of significance (p = 0.077). CTTW increased by 8.1 ± 9.0% in the AL group (p = 0.036) and remained statistically unchanged in the SL group. Only the AL group showed a relationship between changes in TTW and TDB100 and changes in RTD at posttest (p = 0.022 and p = 0.016, respectively). Altitude induced differences in muscular adaptations likely due to greater peripheral fatigue.


Subject(s)
Altitude , Martial Arts , Athletes , Electromyography , Humans , Isometric Contraction , Male , Muscle Strength , Muscle, Skeletal
6.
Article in English | MEDLINE | ID: mdl-33807611

ABSTRACT

The six-minute walk test (6MWT) is a widely used test for the indirect measurement of cardiorespiratory fitness in various cancer populations. Although the 6MWT is a simple test, there are no normative values for breast cancer survivors (BCS) or comparisons of results with healthy counterparts. A systematic review with a meta-analysis was carried out, which included studies from 2007 to 2020. Ninety-one studies were found, 21 of which were included in the quantitative synthesis. Among them were 9 randomized controlled trials (RCT), 8 prospective cohort studies and 4 cross-sectional studies. A total of 1084 BCS were included. Our results revealed that healthy subjects (n = 878) covered a significantly greater distance than BCS during the 6MWT (589.9 m vs. 477.4 m, p < 0.001), and the results of the meta-regression analysis showed that the 6MWD was predicted by the participants' BMI (p < 0.001), but not by their age (p = 0.070). After adjustment for BMI, the healthy subjects also covered greater distances than the BCS (103 m; p < 0.001). The normative values of 6MWT were presented for BCS. Besides, 6MWT distances distinguish between their healthy counterparts, therefore, the 6MWT distance is a relevant parameter for the assessment and monitoring of cardiorespiratory fitness in medical and exercise interventions for BCS.


Subject(s)
Breast Neoplasms , Cancer Survivors , Cardiorespiratory Fitness , Exercise Test , Humans , Survivors , Walk Test , Walking
7.
J Cardiovasc Nurs ; 36(5): 507-516, 2021.
Article in English | MEDLINE | ID: mdl-32496365

ABSTRACT

BACKGROUND: Blood flow-restricted resistance training (BFR-RT) has been proven to be safe and efficacious in healthy older adults, but not in cardiovascular disease. OBJECTIVE: The aim of this study was to investigate the acute and training induced effects of BFR-RT on hemostatic and hemodynamic responses in patients with coronary artery disease (CAD). METHODS: Stable patients with CAD were randomized to 8 weeks of BFR-RT (30%-40% 1-repetition maximum unilateral knee extension) combined with aerobic training or aerobic training alone (control group). At baseline and after 4 and 8 weeks, blood samples were taken before and after BFR exercise, whereas hemodynamic parameters were monitored throughout the exercise. RESULTS: Twenty-four patients (12 per group; mean age, 60 ± 2 years; mostly male [75%]) completed the study. The BFR-RT significantly improved systolic blood pressure (-10 mm Hg; P = .020) and tended to lower diastolic blood pressure (-2 mm Hg; P = .066). In contrast, no posttraining alterations were observed in N-terminal prohormone B-type natriuretic hormone, fibrinogen, and D-dimer values. During BFR exercise, all hemodynamic variables significantly increased after the first and second set, whereas blood pressure immediately lowered after the cuff was released in the third set. Last, significant interaction was only observed for repetitions × intensity (P < .001; partial η2 = 0.908) of diastolic blood pressure at higher exercise intensity (40% 1-repetition maximum). CONCLUSIONS: The BFR-RT was proven to be safe, with favorable hemodynamic and hemostatic responses in patients with CAD, and can be recommended as an additional exercise modality in cardiac rehabilitation.Trial Registration:ClinicalTrial.gov Identifier: NCT03087292.


Subject(s)
Coronary Artery Disease , Hemostatics , Resistance Training , Aged , Coronary Artery Disease/therapy , Female , Hemodynamics , Humans , Male , Middle Aged , Muscle, Skeletal , Pilot Projects , Regional Blood Flow
8.
Article in English | MEDLINE | ID: mdl-33345002

ABSTRACT

Alpine skis with wider waist widths have recently become more popular. With such skis, the contact point of the ground reaction force during ski turns is displaced more medially from beneath the sole of the outer ski, which may present an increased risk of injury. The aim of this study was to investigate knee joint kinetics, kinematics, and lower limb muscle activation as a function of changes of the ski waist width in a laboratory setting. A custom skiing simulator was constructed to enable simulation of different ski waist widths in a quasi-static ski turn position. An optical system was used for capturing knee joint kinematics of the outer leg, whereas a force plate was used to determine the ground reaction force vector. The combination of both systems enabled values for external torques acting on the knee joint to be calculated, whereas electromyographic measurements enabled an analysis of knee flexor muscle activation. With respect to the outer ski, the knee joint external torques were independent of ski waist width, whereas knee joint external rotation and biceps femoris activation increased significantly with the increase of the ski waist width. Skier muscle and kinematics adaptation most probably took place to diminish the external knee joint torque changes when the waist width of the ski was increased. The laboratory results suggest that using skis with large waist widths on hard, frozen surfaces may change the load of knee joint surfaces. However, future research is needed to clarify if this may result in the increased risk of knee injury.

9.
Front Physiol ; 10: 656, 2019.
Article in English | MEDLINE | ID: mdl-31244668

ABSTRACT

Resistance training may be associated with unfavorable cardiovascular responses (such as hemodynamic alterations, anginal symptoms or ventricular arrhythmias). In healthy adults, blood flow-restricted (BFR) resistance training improves muscle strength and hypertrophy improvements at lower loads with minimal systemic cardiovascular adverse responses. The aim of this study was to assess the safety and efficacy of BFR resistance training in patients with coronary artery disease (CAD) compared to usual care. Patients with stable CAD were randomized to either 8 weeks of supervised biweekly BFR resistance training (30-40% 1RM unilateral knee extension) or usual exercise routine. At baseline and after 8 weeks, patients underwent 1-RM knee extension tests, ultrasonographic appraisal of vastus lateralis (VL) muscle diameter and of systemic (brachial artery) flow-mediated dilation, and determination of markers of inflammation (CD40 ligand and tumor necrosis factor alfa), and fasting glucose and insulin levels for homeostatic model assessment (HOMA). A total of 24 patients [12 per group, mean age 60 ± 2 years, 6 (25%) women] were included. No training-related adverse events were recorded. At baseline groups significantly differ in age (mean difference: 8.7 years, p < 0.001), systolic blood pressure (mean difference: 12.17 mmHg, p = 0.024) and in metabolic control [insulin (p = 0.014) and HOMA IR (p = 0.014)]. BFR-resistance training significantly increased muscle strength (1-RM, +8.96 kg, p < 0.001), and decreased systolic blood pressure (-6.77 mmHg; p = 0.030), whereas VL diameter (+0.09 cm, p = 0.096), brachial artery flow-mediated vasodilation (+1.55%; p = 0.079) and insulin sensitivity (HOMA IR change of 1.15, p = 0.079) did not improve significantly. Blood flow restricted resistance training is safe and associated with significant improvements in muscle strength, and may be therefore provided as an additional exercise option to aerobic exercise to improve skeletal muscle functioning in patients with CAD. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03087292.

10.
Gait Posture ; 71: 1-6, 2019 06.
Article in English | MEDLINE | ID: mdl-30999268

ABSTRACT

BACKGROUND: Being aware of ankle movement and motor control has a critical role in maintaining balance during functional activities such as standing, walking, and running. Since the somatosensory system declines with aging, this is even more important for older adults. RESEARCH QUESTION: How do different exercise modalities (static stretching, one-leg balance task, concentric contractions, and control) acutely influence ankle motion sense in young and older adults? METHODS: Seventeen young and fifteen older participants performed four different intervention protocols (static stretching, one-leg balance task, concentric contractions, and control) in random order. Each session comprised measurements of ankle motion sense in plantar flexion (PF) and dorsal flexion (DF) directions prior to and after an intervention protocol. Average threshold levels (in degrees) of motion sense detection were calculated from three trials in each direction (PF/DF). RESULTS: A lower threshold of motion ankle sense was observed for young adults compared to older adults regardless of the exercise modality and the direction of the movement (p < 0.001). However, the changes in PF and DF ankle motion senses followed a similar trend in both groups during the three exercise modalities: static stretching increased ankle motion sense threshold (PF: 14% and 5%; DF: 19% and 11% in young and older adults, respectively), concentric contractions decreased ankle motion sense threshold (PF: -24% and -14%; DF: -19% and -21% in young and older adults, respectively), and the one-leg balance task did not significantly influence the ankle motion sense threshold (PF: -1% and -2%; DF: 6% and 1% in young and older adults, respectively). SIGNIFICANCE: Based on these results, static stretching should not be performed before ankle activities that require a good balance, precision, and coordination. Concentric contractions could be recommended before activities that challenge our postural stability.


Subject(s)
Ankle , Muscle Stretching Exercises , Range of Motion, Articular , Aged , Ankle/physiology , Ankle Joint , Female , Humans , Male , Motion , Movement , Young Adult
11.
PLoS One ; 14(1): e0210881, 2019.
Article in English | MEDLINE | ID: mdl-30653585

ABSTRACT

Proper ankle motor control is critical for balance in the human body during functional activities such as standing, walking, and running. Different exercise modalities are often performed during the same training session where earlier activities may influence later ones. The purpose of the current study was to determine the acute effects of different exercise modalities on ankle force sense. Seventeen subjects performed four different intervention protocols (static stretching, balance task, concentric contractions, and control) in random order. Each session comprised measurements before and after the intervention protocol of the force sense of the ankle plantar flexors (PF) and dorsal flexors (DF) at 10% and 30% of maximal voluntary isometric contraction (MVC). Absolute errors (AE) were calculated separately for each force level and muscle group. An overall PF error (PF-SUM = PF at 10%MVC + PF at 30%MVC), DF error (DF-SUM = DF at 10%MVC + DF at 30%MVC) and ankle error (PF-DF-SUM = PF-SUM + DF-SUM) were also calculated. The main effect of time generally revealed that ankle force sense was significantly reduced after static stretching (PF-DF-SUM: Pre: 6.11±2.17 Nm, Post: 8.03±3.28 Nm; p < 0.05), but no significant differences were observed for the concentric contractions (PF-DF-SUM: Pre: 6.01±1.97 Nm, Post: 6.50±2.28 Nm) and the balance task (PF-DF-SUM: Pre: 5.25±1.97 Nm, Post: 5.50±1.26 Nm). The only significant interaction was observed for the PF-DF-SUM (F = 4.48, p = 0.008) due to greater error scores after stretching (+31.4%) compared to the concentric (+8.2%), balance (+4.8%), and control (-3.5%) conditions. Based on these results, static stretching should not be performed before activities that require a high ankle force sense such as balance, coordination, and precision tasks.


Subject(s)
Ankle Joint/physiology , Muscle Contraction/physiology , Muscle Stretching Exercises/methods , Postural Balance/physiology , Adult , Biomechanical Phenomena , Female , Humans , Isometric Contraction/physiology , Male , Muscle Strength/physiology , Young Adult
12.
J Hum Kinet ; 70: 47-59, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31915475

ABSTRACT

Few, if any, studies have reported the effects of intensity of balance exercise for balance training and rehabilitation. The aim of the present study was to find a relative measure of intensity of balance exercise. On this basis, we analysed ankle muscle activation in the sagittal plane with increasing difficulty for a one leg stance on a T-board. Ten adults (7 men, 24.1 ± 3.5 years; 3 women, 30.6 ± 5.8 years) performed 3 trials on a T-board within 6 randomly assigned stability levels. T-board swaying velocities in the sagittal plane were manipulated to attain different stability levels (conditions). Concurrently, angular distance of the T-board and active balance time (i.e., percentage of a total time balancing) under each condition were measured. Surface electromyography from the tibialis anterior, gastrocnemius and soleus were monitored during one leg stance. The surface electromyography amplitude in the time domain was quantified using the root-mean-square values. Significant effect of stability levels on angular distance (F5,45 = 3.4; p = 0.01) and velocity of the T-board (F5,45 = 4.6; p = 0.002) were obtained. Active balance time decreased by ∼15% (p = 0.001) from the maximal to the minimal stability conditions. The graded level of balance board stability conditions did not generate significantly higher root-mean-square values in any muscles and hence could not be used as a relative measure of intensity of balance exercise. These findings imply that there could be a plateau in difficulty of balance exercise for enhancement of ankle muscle activity.

13.
Int J Sports Physiol Perform ; 12(7): 878-885, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27918667

ABSTRACT

PURPOSE: To compare neuromuscular fatigue induced by repeated-sprint running vs cycling. METHODS: Eleven active male participants performed 2 repeated-maximal-sprint protocols (5×6 s, 24-s rest periods, 4 sets, 3 min between sets), 1 in running (treadmill) and 1 in cycling (cycle ergometer). Neuromuscular function, evaluated before (PRE); 30 s after the first (S1), the second (S2), and the last set (LAST); and 5 min after the last set (POST5) determined the knee-extensor maximal voluntary torque (MVC); voluntary activation (VA); single-twitch (Tw), high- (Db100), and low- (Db10) frequency torque; and maximal muscle compound action potential (M-wave) amplitude and duration of vastus lateralis. RESULTS: Peak power output decreased from 14.6 ± 2.2 to 12.4 ± 2.5 W/kg in cycling (P < .01) and from 21.4 ± 2.6 to 15.2 ± 2.6 W/kg in running (P < .001). MVC declined significantly from S1 in running but only from LAST in cycling. VA decreased after S2 (~-7%, P < .05) and LAST (~-9%, P < .01) set in repeated-sprint running and did not change in cycling. Tw, Db100, and Db10/Db100 decreased to a similar extent in both protocols (all P < .001 post-LAST). Both protocols induced a similar level of peripheral fatigue (ie, low-frequency peripheral fatigue, no changes in M-wave characteristics), while underlying mechanisms probably differed. Central fatigue was found only after running. CONCLUSION: Findings about neuromuscular fatigue resulting from RS cycling cannot be transferred to RS running.


Subject(s)
Bicycling/physiology , Muscle Fatigue , Running/physiology , Adult , Electric Stimulation , Electromyography , Ergometry , Exercise , Femoral Nerve/physiology , Humans , Isometric Contraction , Male , Quadriceps Muscle/physiology , Torque , Young Adult
14.
PLoS One ; 11(7): e0160401, 2016.
Article in English | MEDLINE | ID: mdl-27467760

ABSTRACT

This study evaluated the influence of an altitude training (AT) camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men) were allocated to both the control (Sea Level Training, SLT) and experimental conditions (AT, 2320 m above sea level) that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers' body weight) were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1%) and 15 m (+4.0%) were observed (P < 0.05), whereas no significant changes for the same distances were detected following the AT camp (-0.89%; P > 0.05). Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: < 0.20). Based on these results we can conclude that a traditional training high-living high strategy concurrent training of 3 weeks does not adversely affect swimming start time and loaded squat jump performance in high level swimmers, but further studies are necessary to assess the effectiveness of power-oriented resistance training in the development of explosive actions.


Subject(s)
Altitude , Exercise , Swimming , Weight Lifting , Adolescent , Adult , Female , Humans , Male , Reproducibility of Results , Young Adult
15.
J Hum Kinet ; 50: 157-165, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-28149353

ABSTRACT

This study aimed to examine the correlation of different dry land strength and power tests with swimming start performance. Twenty international level female swimmers (age 15.3 ± 1.6 years, FINA point score 709.6 ± 71.1) performed the track freestyle start. Additionally, dry land tests were conducted: a) squat (SJ) and countermovement jumps (CMJ), b) squat jumps with additional resistance equivalent to 25, 50, 75 and 100% of swimmers' body weight [BW]), and c) leg extension and leg flexion maximal voluntary isometric contractions. Correlations between dry land tests and start times at 5, 10 and 15 m were quantified through Pearson's linear correlation coefficients (r). The peak bar velocity reached during the jumps with additional resistance was the variable most correlated to swimming start performance (r = -0.57 to -0.66 at 25%BW; r = -0.57 to -0.72 at 50%BW; r = -0.59 to -0.68 at 75%BW; r = -0.50 to - 0.64 at 100%BW). A few significant correlations between the parameters of the SJ and the CMJ with times of 5 and 10 m were found, and none with the isometric variables. The peak velocity reached during jumps with external loads relative to BW was found a good indicator of swimming start performance.

16.
J Sports Sci ; 31(3): 299-304, 2013.
Article in English | MEDLINE | ID: mdl-23051041

ABSTRACT

The aim of this study was to investigate changes in running mechanics and spring-mass behaviour with fatigue induced by 5-hour hilly running (5HHR). Running mechanics were measured pre- and post-5HHR at 10, 12 and 14 km · h(-1) on an instrumented treadmill in eight ultramarathon runners, and sampled at 1000 Hz for 10 consecutive steps. Contact (t(c) ) and aerial (t(a) ) times were determined from ground reaction force (GRF) signals and used to compute step frequency (f). Maximal GRF, loading rate, downward displacement of the centre of mass (Δz), and leg length change (ΔL) during the support phase were determined and used to compute both vertical (K(vert) ) and leg (K(leg) ) stiffness. A significant decrease in t(c) was observed at 12 and 14 km · h(-1) resulting in an increase of f at all speeds. Duty factor and F(max) significantly decreased at 10 km · h(-1). A significant increase in K(vert) and K(leg) was observed at all running speeds with significant decreases in Δz and ΔL. Despite the shorter duration, the changes in running mechanics appeared to be in the same direction (increased f and K(vert) , decrease in Δz and F(max) ) but of lower amplitude compared with those obtained after an ultra-trail or an ultramarathon.


Subject(s)
Fatigue/physiopathology , Leg/physiology , Physical Endurance/physiology , Running/physiology , Task Performance and Analysis , Adult , Biomechanical Phenomena , Gait , Humans , Male , Middle Aged , Models, Biological
17.
Eur J Appl Physiol ; 112(7): 2645-52, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22085978

ABSTRACT

This study aimed to examine the effects of a 5-h hilly run on ankle plantar (PF) and dorsal flexor (DF) force and fatigability. It was hypothesised that DF fatigue/fatigability would be greater than PF fatigue/fatigability. Eight male trail long distance runners (42.5 ± 5.9 years) were tested for ankle PF and DF maximal voluntary isokinetic contraction strength and fatigue resistance tests (percent decrement score), maximal voluntary and electrically evoked isometric contraction strength before and after the run. Maximal EMG root mean square (RMS(max)) and mean power frequency (MPF) values of the tibialis anterior (TA), gastrocnemius lateralis (GL) and soleus (SOL) EMG activity were calculated. The peak torque of the potentiated high- and low-frequency doublets and the ratio of paired stimulation peak torques at 10 Hz over 100 Hz (Db10:100) were analysed for PF. Maximal voluntary isometric contraction strength of PF decreased from pre- to post-run (-17.0 ± 6.2%; P < 0.05), but no significant decrease was evident for DF (-7.9 ± 6.2%). Maximal voluntary isokinetic contraction strength and fatigue resistance remained unchanged for both PF and DF. RMS(max) SOL during maximal voluntary isometric contraction and RMS(max) TA during maximal voluntary isokinetic contraction were decreased (P < 0.05) after the run. For MPF, a significant decrease for TA (P < 0.05) was found and the ratio Db10:100 decreased for PF (-6.5 ± 6.0%; P < 0.05). In conclusion, significant isometric strength loss was only detected for PF after a 5-h hilly run and was partly due to low-frequency fatigue. This study contradicted the hypothesis that neuromuscular alterations due to prolonged hilly running are predominant for DF.


Subject(s)
Ankle Joint/physiology , Isometric Contraction/physiology , Muscle Fatigue/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Running/physiology , Adult , Humans , Male
18.
Eur J Appl Physiol ; 112(4): 1419-28, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21826454

ABSTRACT

We investigated the changes in constant velocity spring-mass behavior after high intensity sprint fatigue in order to better interpret the results recently reported after ultra-long distance (ULD) exercises. Our hypothesis was that after repeated sprints (RS), subjects may likely experience losses of force such as after ULD, but the necessity to modify their running pattern to attenuate the overall impact at each step (such as after ULD) may not be present. Eleven male subjects performed four sets of five 6-s sprints with 24-s recovery between sprints and 3 min between sets, on a sprint treadmill and on a bicycle ergometer. For each session, their running mechanics and spring-mass characteristics were measured at 10 and 20 km h(-1) on an instrumented treadmill before and after RS. Two-way (period and velocity) ANOVAs showed that high-intensity fatigue did not induce any change in the constant velocity running pattern at low or high velocity, after both running and cycling RS, despite significant decreases (P < 0.001) in maximal power (-27.1 ± 8.2% after running RS and -15.4 ± 11.5 % after cycling RS) and knee extensors maximal voluntary force (-18.8 ± 6.7 % after running RS and -15.0 ± 7.6 % after cycling RS). These results bring indirect support to the hypothesis put forward in recent ULD studies that the changes in running mechanics observed after ULD are likely not related to the decrease in strength capabilities, but rather to the necessity for subjects to adopt a protective running pattern.


Subject(s)
Muscle Contraction , Muscle Fatigue , Muscle Strength , Muscle, Skeletal/physiology , Running , Adaptation, Physiological , Adult , Analysis of Variance , Bicycling , Biomechanical Phenomena , Exercise Test , France , Humans , Male , Recovery of Function , Time Factors , Young Adult
19.
J Biomech ; 44(15): 2719-23, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21839456

ABSTRACT

We investigated the changes in the technical ability of force application/orientation against the ground vs. the physical capability of total force production after a multiple-set repeated sprints series. Twelve male physical education students familiar with sprint running performed four sets of five 6-s sprints (24s of passive rest between sprints, 3min between sets). Sprints were performed from a standing start on an instrumented treadmill, allowing the computation of vertical (F(V)), net horizontal (F(H)) and total (F(Tot)) ground reaction forces for each step. Furthermore, the ratio of forces was calculated as RF=F(H)F(Tot)(-1), and the index of force application technique (D(RF)) representing the decrement in RF with increase in speed was computed as the slope of the linear RF-speed relationship. Changes between pre- (first two sprints) and post-fatigue (last two sprints) were tested using paired t-tests. Performance decreased significantly (e.g. top speed decreased by 15.7±5.4%; P<0.001), and all the mechanical variables tested significantly changed. F(H) showed the largest decrease, compared to F(V) and F(Tot). D(RF) significantly decreased (P<0.001, effect size=1.20), and the individual magnitudes of change of D(RF) were significantly more important than those of F(Tot) (19.2±20.9 vs. 5.81±5.76%, respectively; P<0.01). During a multiple-set repeated sprint series, both the total force production capability and the technical ability to apply force effectively against the ground are altered, the latter to a larger extent than the former.


Subject(s)
Models, Biological , Muscle Fatigue/physiology , Muscle Strength/physiology , Running/physiology , Adult , Humans , Male
20.
PLoS One ; 6(2): e17059, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21364944

ABSTRACT

We investigated the physiological consequences of one of the most extreme exercises realized by humans in race conditions: a 166-km mountain ultra-marathon (MUM) with 9500 m of positive and negative elevation change. For this purpose, (i) the fatigue induced by the MUM and (ii) the recovery processes over two weeks were assessed. Evaluation of neuromuscular function (NMF) and blood markers of muscle damage and inflammation were performed before and immediately following (n = 22), and 2, 5, 9 and 16 days after the MUM (n = 11) in experienced ultra-marathon runners. Large maximal voluntary contraction decreases occurred after MUM (-35% [95% CI: -28 to -42%] and -39% [95% CI: -32 to -46%] for KE and PF, respectively), with alteration of maximal voluntary activation, mainly for KE (-19% [95% CI: -7 to -32%]). Significant modifications in markers of muscle damage and inflammation were observed after the MUM as suggested by the large changes in creatine kinase (from 144 ± 94 to 13,633 ± 12,626 UI L(-1)), myoglobin (from 32 ± 22 to 1,432 ± 1,209 µg L(-1)), and C-Reactive Protein (from <2.0 to 37.7 ± 26.5 mg L(-1)). Moderate to large reductions in maximal compound muscle action potential amplitude, high-frequency doublet force, and low frequency fatigue (index of excitation-contraction coupling alteration) were also observed for both muscle groups. Sixteen days after MUM, NMF had returned to initial values, with most of the recovery process occurring within 9 days of the race. These findings suggest that the large alterations in NMF after an ultra-marathon race are multi-factorial, including failure of excitation-contraction coupling, which has never been described after prolonged running. It is also concluded that as early as two weeks after such an extreme running exercise, maximal force capacities have returned to baseline.


Subject(s)
Motor Neurons/physiology , Mountaineering/physiology , Muscle, Skeletal/physiology , Muscular Diseases/etiology , Running/physiology , Adult , Electric Stimulation , Electromyography , Humans , Male , Middle Aged , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/innervation , Muscular Diseases/rehabilitation , Perception/physiology , Physical Endurance/physiology , Physical Exertion/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...