Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(8)2021 07 28.
Article in English | MEDLINE | ID: mdl-34440324

ABSTRACT

Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.


Subject(s)
Infant, Newborn, Diseases/pathology , Polycythemia/pathology , Humans , Infant, Newborn
2.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34281163

ABSTRACT

Erythropoietin (EPO) acts on multiple tissues through its receptor EPOR, a member of a cytokine class I receptor superfamily with pleiotropic effects. The interaction of EPO and EPOR triggers the activation of several signaling pathways that induce erythropoiesis, including JAK2/STAT5, PI3K/AKT, and MAPK. The canonical EPOR/JAK2/STAT5 pathway is a known regulator of differentiation, proliferation, and cell survival of erythroid progenitors. In addition, its role in the protection of other cells, including cancer cells, is under intense investigation. The involvement of EPOR/JAK2/STAT5 in other processes such as mRNA splicing, cytoskeleton reorganization, and cell metabolism has been recently described. The transcriptomics, proteomics, and epigenetic studies reviewed in this article provide a detailed understanding of EPO signalization. Advances in this area of research may be useful for improving the efficacy of EPO therapy in hematologic disorders, as well as in cancer treatment.


Subject(s)
Erythropoietin/metabolism , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/physiology , Animals , Cell Differentiation/drug effects , Epigenomics/methods , Erythropoiesis/drug effects , Erythropoietin/physiology , Humans , Janus Kinase 2/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proteomics/methods , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Erythropoietin/metabolism , Receptors, Erythropoietin/physiology , STAT5 Transcription Factor/genetics , Signal Transduction/drug effects , Trans-Activators/metabolism , Transcriptome/genetics
3.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209205

ABSTRACT

Erythropoiesis is regulated by several factors, including the oxygen-sensing pathway as the main regulator of erythropoietin (EPO) synthesis in the kidney. The release of EPO from the kidney and its binding to the EPO receptor (EPOR) on erythrocyte progenitor cells in the bone marrow results in increased erythropoiesis. Any imbalance in these homeostatic mechanisms can lead to dysregulated erythropoiesis and hematological disorders. For example, mutations in genes encoding key players of oxygen-sensing pathway and regulation of EPO production (HIF-EPO pathway), namely VHL, EGLN, EPAS1 and EPO, are well known causative factors that contribute to the development of erythrocytosis. We aimed to investigate additional molecular mechanisms involved in the HIF-EPO pathway that correlate with erythropoiesis. To this end, we conducted an extensive literature search and used several in silico tools. We identified genes encoding transcription factors and proteins that control transcriptional activation or repression; genes encoding kinases, deacetylases, methyltransferases, conjugating enzymes, protein ligases, and proteases involved in post-translational modifications; and genes encoding nuclear transport receptors that regulate nuclear transport. All these genes may modulate the stability or activity of HIF2α and its partners in the HIF-EPO pathway, thus affecting EPO synthesis. The theoretical information we provide in this work can be a valuable tool for a better understanding of one of the most important regulatory pathways in the process of erythropoiesis. This knowledge is necessary to discover the causative factors that may contribute to the development of hematological diseases and improve current diagnostic and treatment solutions in this regard.


Subject(s)
Erythropoiesis , Erythropoietin/biosynthesis , Gene Expression Regulation , Oxygen/metabolism , Signal Transduction , Humans
4.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299300

ABSTRACT

Erythropoietin (EPO) is a glycoprotein cytokine known for its pleiotropic effects on various types of cells and tissues. EPO and its receptor EPOR trigger signaling cascades JAK2/STAT5, MAPK, and PI3K/AKT that are interconnected and irreplaceable for cell survival. In this article, we describe the role of the MAPK and PI3K/AKT signaling pathways during red blood cell formation as well as in non-hematopoietic tissues and tumor cells. Although the central framework of these pathways is similar for most of cell types, there are some stage-specific, tissue, and cell-lineage differences. We summarize the current state of research in this field, highlight the novel members of EPO-induced PI3K and MAPK signaling, and in this respect also the differences between erythroid and non-erythroid cells.


Subject(s)
Erythropoiesis/physiology , Erythropoietin/physiology , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Cell Survival/physiology , Humans , MAP Kinase Signaling System , Models, Biological , Neoplasms/physiopathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Erythropoietin/physiology , Signal Transduction
5.
Arch Toxicol ; 93(11): 3321-3333, 2019 11.
Article in English | MEDLINE | ID: mdl-31542801

ABSTRACT

The evaluation of genotoxicity plays an important role within hazard identification and risk assessment of chemicals and consumer products. For genotoxicity assessment, in vitro hepatic cells are often used as they have retained certain level of xenobiotic metabolic activity. However, current protocols are designed for the use on 2D monolayer models that are associated with several limitations due to the lack of numerous biological functions, which results in the loss of many hepatic properties. In this respect, an attractive alternative are three-dimensional (3D) models. The aim of our study was to develop physiologically more relevant 3D cell model (spheroids) from the human hepatocellular carcinoma (HepG2) cell line for genotoxicity testing. The spheroids were prepared by the forced floating method, which had been optimized for the production of a large number of uniform spheroids. The sensitivity of the spheroids to detect genotoxicity was determined by the comet assay after the exposure of spheroids to non-cytotoxic concentrations of model indirect acting genotoxic compounds, namely polycyclic aromatic hydrocarbon (B(a)P), mycotoxin (AFB1), two heterocyclic aromatic amines (PhIP and IQ) and a direct acting etoposide (ET). All five tested compounds concentration dependently induced DNA damage. Higher sensitivity of 3D cell model compared to 2D monolayer culture was noticed particularly for detection of the genotoxicity of the heterocyclic aromatic amines and BaP. Deregulation of mRNA expression (qPCR) by genotoxic compounds revealed that HepG2 cells in 3D express important genes encoding phase I and II metabolic enzymes, as well as DNA damage responsive genes in an inducible form. The newly developed HepG2 3D model shows improved sensitivity for detecting genotoxic compounds compared to 2D cultures and can provide a suitable experimental model for genotoxicity assessment.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Culture Techniques/methods , Comet Assay/methods , Liver Neoplasms/pathology , Mutagens/toxicity , Spheroids, Cellular/drug effects , Cell Survival/drug effects , Cell Survival/genetics , DNA Damage , Gene Expression/drug effects , Hep G2 Cells , Humans , Spheroids, Cellular/pathology
6.
Arch Toxicol ; 92(5): 1893-1903, 2018 05.
Article in English | MEDLINE | ID: mdl-29549414

ABSTRACT

The problem of the currently used routine genotoxicity tests is relatively low predictivity of in vitro tests for in vivo genotoxicity and carcinogenicity. An important reason is considered to be inadequate expression of xenobiotic-metabolizing enzymes in indicator cell lines. The aim of our study was to generate metabolically active differentiated hepatic progenies (hDHP) from human adipose tissue-derived mesenchymal stem cells (hASC) for genotoxicity testing. hDHP, generated using a three-step hepatic differentiation procedure, expressed hepatic properties such as glycogen storage and albumin secretion. The results of the comet assay demonstrated comparable sensitivity of hASC and hDHP to detect DNA damage induced by a direct acting genotoxic agent tert-butylhydroperoxide. Exposure to model indirect acting genotoxins benzo(a)pyrene, aflatoxin B1, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine did not induce DNA damage in hASC, while hDHP cells detected DNA damage induced by benzo(a)pyrene and aflatoxin B1, indicating their metabolic activity. The gene and protein expression analysis confirmed the presence of key enzymes involved in metabolism of the three genotoxins in hDHP cells. Moreover, the exposure of hDHP to the model pro-carcinogens altered the expression of selected metabolic genes. hDHP were further immortalized with hTERT transfection, resulting in a stable cell line that can be matured to metabolically active hDHP ready for genotoxicity testing in only 2 weeks. The advantage of these immortalized cells is their prolonged replicative life span and consequently limitless supply of hDHP cells. We conclude that hDHP cells have a great potential for the application in the routine genotoxicity testing and are therefore worth further investigations.


Subject(s)
Adipose Tissue/cytology , Liver/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mutagenicity Tests/methods , Aflatoxin B1/toxicity , Benzo(a)pyrene/toxicity , Cell Differentiation , Cell Line , Comet Assay/methods , Enzymes/genetics , Enzymes/metabolism , Female , Hep G2 Cells , Humans , Imidazoles/toxicity , Mesenchymal Stem Cells/physiology
7.
Arch Toxicol ; 92(2): 921-934, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29218508

ABSTRACT

Cell lines which are currently used in genotoxicity tests lack enzymes which activate/detoxify mutagens. Therefore, rodent-derived liver preparations are used which reflect their metabolism in humans only partly; as a consequence misleading results are often obtained. Previous findings suggest that certain liver cell lines express phase I/II enzymes and detect promutagens without activation; however, their use is hampered by different shortcomings. The aim of this study was the identification of a suitable cell line. The sensitivity of twelve hepatic cell lines was investigated in single cell gel electrophoresis assays. Furthermore, characteristics of these lines were studied which are relevant for their use in genotoxicity assays (mitotic activity, p53 status, chromosome number, and stability). Three lines (HuH6, HCC1.2, and HepG2) detected representatives of five classes of promutagens, namely, IQ and PhIP (HAAs), B(a)P (PAH), NDMA (nitrosamine), and AFB1 (aflatoxin), and were sensitive towards reactive oxygen species (ROS). In contrast, the commercially available line HepaRG, postulated to be a surrogate for hepatocytes and an ideal tool for mutagenicity tests, did not detect IQ and was relatively insensitive towards ROS. All other lines failed to detect two or more compounds. HCC1.2 cells have a high and unstable chromosome number and mutated p53, these features distract from its use in routine screening. HepG2 was frequently employed in earlier studies, but pronounced inter-laboratory variations were observed. HuH6 was never used in genotoxicity experiments and is highly promising, it has a stable karyotype and we demonstrated that the results of genotoxicity experiments are reproducible.


Subject(s)
Liver/diagnostic imaging , Mutagenicity Tests/methods , Mutagens/analysis , Aflatoxin B1/toxicity , Benzo(a)pyrene/toxicity , Cell Line, Tumor , Dimethylnitrosamine/toxicity , Humans , Hydrogen Peroxide/toxicity , Imidazoles/toxicity , Inactivation, Metabolic , Liver/cytology , Quinolines/toxicity , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...