Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gut ; 73(8): 1292-1301, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38839272

ABSTRACT

OBJECTIVE: There is a strong clinical association between IBD and primary sclerosing cholangitis (PSC), a chronic disease of the liver characterised by biliary inflammation that leads to strictures and fibrosis. Approximately 60%-80% of people with PSC will also develop IBD (PSC-IBD). One hypothesis explaining this association would be that PSC drives IBD. Therefore, our aim was to test this hypothesis and to decipher the underlying mechanism. DESIGN: Colitis severity was analysed in experimental mouse models of colitis and sclerosing cholangitis, and people with IBD and PSC-IBD. Foxp3+ Treg-cell infiltration was assessed by qPCR and flow cytometry. Microbiota profiling was carried out from faecal samples of people with IBD, PSC-IBD and mouse models recapitulating these diseases. Faecal microbiota samples collected from people with IBD and PSC-IBD were transplanted into germ-free mice followed by colitis induction. RESULTS: We show that sclerosing cholangitis attenuated IBD in mouse models. Mechanistically, sclerosing cholangitis causes an altered intestinal microbiota composition, which promotes Foxp3+ Treg-cell expansion, and thereby protects against IBD. Accordingly, sclerosing cholangitis promotes IBD in the absence of Foxp3+ Treg cells. Furthermore, people with PSC-IBD have an increased Foxp3+ expression in the colon and an overall milder IBD severity. Finally, by transplanting faecal microbiota into gnotobiotic mice, we showed that the intestinal microbiota of people with PSC protects against colitis. CONCLUSION: This study shows that PSC attenuates IBD and provides a comprehensive insight into the mechanisms involved in this effect.


Subject(s)
Cholangitis, Sclerosing , Disease Models, Animal , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , T-Lymphocytes, Regulatory , Cholangitis, Sclerosing/immunology , Cholangitis, Sclerosing/complications , Cholangitis, Sclerosing/microbiology , Animals , Mice , T-Lymphocytes, Regulatory/immunology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/immunology , Humans , Forkhead Transcription Factors/metabolism , Colitis/microbiology , Colitis/complications , Male , Fecal Microbiota Transplantation , Female , Feces/microbiology , Mice, Inbred C57BL
2.
Front Oncol ; 13: 1170502, 2023.
Article in English | MEDLINE | ID: mdl-37324022

ABSTRACT

Background: The immune system plays a pivotal role in cancer progression. Interleukin 22 binding protein (IL-22BP), a natural antagonist of the cytokine interleukin 22 (IL-22) has been shown to control the progression of colorectal cancer (CRC). However, the role of IL-22BP in the process of metastasis formation remains unknown. Methods: We used two different murine in vivo metastasis models using the MC38 and LLC cancer cell lines and studied lung and liver metastasis formation after intracaecal or intrasplenic injection of cancer cells. Furthermore, IL22BP expression was measured in a clinical cohort of CRC patients and correlated with metastatic tumor stages. Results: Our data indicate that low levels of IL-22BP are associated with advanced (metastatic) tumor stages in colorectal cancer. Using two different murine in vivo models we show that IL-22BP indeed controls the progression of liver but not lung metastasis in mice. Conclusions: We here demonstrate a crucial role of IL-22BP in controlling metastasis progression. Thus, IL-22 might represent a future therapeutic target against the progression of metastatic CRC.

SELECTION OF CITATIONS
SEARCH DETAIL
...