Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add more filters










Publication year range
1.
RSC Adv ; 13(48): 33957-33993, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38019980

ABSTRACT

Access to clean water is increasingly challenging worldwide due to human activities and climate change. Wastewater treatment and utilization offer a promising solution by reducing the reliance on pure underground water. However, it is crucial to develop efficient and sustainable methods for wastewater purification. Among the emerging wastewater treatment strategies, photocatalysis has gained significant attention for decomposing organic pollutants in water, especially when combined with sunlight and a recoverable photocatalyst. Heterogeneous photocatalysts have distinct advantages, as they can be recovered and reused without significant loss of activity over multiple cycles. Phthalocyanine dyes, with their exceptional photophysical properties, are particularly valuable for homogeneous and heterogeneous photocatalysis. By immobilizing these photosensitizers in various supports, hybrid materials extend their light absorption into the visible spectrum, complementing most supports' limited UV light absorption. The novelty and research importance of this review stems from its discussion of the multifaceted approach to treating contaminated wastewater with phthalocyanines and materials containing phthalocyanines. It highlights key aspects of each study, including photocatalytic efficiency, recyclability characteristics, investigation of the generation of oxygen species responsible for degradation, identification of the major degradation byproducts for each pollutant, and others. Moreover, the review includes tables that illustrate and compare the various phthalocyanines and supporting materials employed in each study for pollutant degradation. Additionally, almost all photocatalysts mentioned in this review could degrade at least 5% of the pollutant, and more than 50 photocatalysts showed photocatalytic rates above 50%. When immobilized in some support, the synergistic effect of the phthalocyanine was visible in the photocatalytic rate of the studied pollutant. However, when performing these types of works, it is necessary to understand the degradation products of each pollutant and their relative toxicities. Along with this, recyclability and stability studies are also necessary. Despite the good results presented in this review, some of the works lack those studies. Moreover, none of the works mentions any study in wastewater.

2.
J Photochem Photobiol B ; 243: 112716, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37126865

ABSTRACT

Photodynamic therapy (PDT) has been used as an alternative or as a complement of conventional approaches for cancer treatment. In PDT, the reactive oxygen species (ROS) produced from the interaction between the photosensitizer (PS), visible light and molecular oxygen, kill malignant cells by triggering a cascade of cytotoxic reactions. In this process, the PS plays an extremely important role in the effectiveness of the therapy. In the present work, a new photoimmunoconjugate (PIC), based on cetuximab and the known third generation PS-glycophthalocyanine ZnPcGal4, was synthesized via reductive amination. The rationale behind this was the simultaneous cancer-associated specific targeting of PIC and photosensitization of targeted receptor positive cells. Varied reaction parameters and photodynamic conditions, such as PS concentrations and both type and intensities of light, were optimized. ZnPcGal4 showed significant photoactivity against EGFR expressing A431, EGFR-transfected HCT116 and HT29 cells when irradiated with white light of stronger intensity (38 mW/cm2). Similarly, the synthesized PICs-T1 and T2 also demonstrated photoactivity with high intensity white light. The best optimized PIC: sample 28 showed no precipitation and aggregation when inspected visually and analyzed through SE-HPLC. Fluorescence excitation of sample 28 and 125I-sample 28 radioconjugate (125I-PIC, 125I-radiolabeling yield ≥95%, determined with ITLC) at 660 nm showed presence of appended ZnPcGal4. In addition, simultaneous fluorescence and radioactivity detection of the 125I-PIC in serum and PBS (pH 7.4) for the longest incubated time point of 72 h, respectively, and superimposed signals thereof demonstrated ≥99% of loading and/or labeling yield, assuring overall stability of the PIC and corresponding PIC-radioconjugate w.r.t. both the appended ZnPcGal4 and bound-125I. Moreover, real-time binding analyses on EGFR-transfected HCT116 cells showed specific binding of 125I-PIC, suggesting no alternation in the binding kinetics of the mAb after appending it with ZnPcGal4. These results suggest dual potential applications of synthesized PICs both for PDT and radio-immunotherapy of cancer.


Subject(s)
Immunoconjugates , Neoplasms , Photochemotherapy , Humans , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Neoplasms/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , ErbB Receptors/metabolism , Cell Line, Tumor
4.
Nanoscale ; 14(36): 13155-13165, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36048027

ABSTRACT

Controlling the molecular architecture of well-organized organic building blocks and linking their functionalities with the impact of solar-light converting systems constitutes a grand challenge in materials science. Strong absorption cross-sections across the visible range of the solar spectrum as well as a finely balanced energy- and redox-gradient are all important features that pave the way for either funneling excited state energy or transducing charges. In light of this, we used thiopyridyl-phthalocyanines (PcSPy) and ruthenium (tert-butyl)-phthalocyanines (RuPc) as versatile building blocks and demonstrated the realization of a family of multi-functional PcSPy-RuPc 1-4 by means of axial coordination. Sizeable electronic couplings between the electron donors and acceptors in PcSPy-RuPc 1-4 govern ground-state as well as excited-state reactivity. Time-resolved techniques, in general, and fluorescence and transient absorption spectroscopy, in particular, helped to corroborate a rapid charge separation next to a slow charge recombination. Key to these charge transfer characteristics are higher lying, vibrationally hot states of the singlet excited states in parallel with a charge transfer state and the presence of several heavy atom effects that are provided by ruthenium and sulfur. As such, our advanced investigations confirm that rapid charge separation evolves from both higher lying, vibrationally hot states as well as from a charge transfer state, populating charge separated states, whose energies exceed those of the singlet excited states. Charge recombination involves triplet rather than singlet charge separated states, which delays the charge recombination by one order of magnitude.

5.
Nanomaterials (Basel) ; 12(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683746

ABSTRACT

Supramolecular hybrids of graphene quantum dots (GQDs) and phthalocyanine (Pc) dyes were studied as turn-OFF-ON photoluminescence nanosensors for detection of ds-DNA. Pcs with four (Pc4) and eight (Pc8) positive charges were selected to interact with negatively charged GQDs. The photoluminescence of the GQDs was quenched upon interaction with the Pcs, due to the formation of non-emissive complexes. In the presence of ds-DNA, the Pcs interacted preferentially with the negatively charged ds-DNA, lifting the quenching effect over the photoluminescence of the GQDs and restoring their emission intensity. The best performance as a sensor of ds-DNA was registered for the GQD-Pc8, with a limit of detection (LOD) in the picomolar range. The LOD for GQD-Pc8 was more than one order of magnitude lower and its sensitivity was about a factor of three higher than that of the analogue GQD-Pc4 nanosensor. The sensitivity and selectivity of this simple GQD-Pc8 nanosensor is comparable to those of the more sophisticated carbon-based nanosensors for DNA reported previously.

6.
J Photochem Photobiol B ; 233: 112502, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35759946

ABSTRACT

The photodynamic inactivation (PDI) of microorganisms has gained interest as an efficient option for conventional antibiotic treatments. Recently, Si(IV) phthalocyanines (SiPcs) have been highlighted as promising photosensitizers (PSs) to the PDI of microorganisms due to their remarkable absorption and emission features. To increase the potential of cationic SiPcs as PS drugs, one novel (1a) and two previously described (2a and 3a) axially substituted PSs with di-, tetra-, and hexa-ammonium units, respectively, were synthesized and characterized. Their PDI effect was evaluated for the first time against Escherichia coli and Staphylococcus aureus, a Gram-negative and a Gram-positive bacterium, respectively. The photodynamic treatments were conducted with PS concentrations of 3.0 and 6.0 µM under 60 min of white light irradiation (150 mW.cm-2). The biological results show high photodynamic efficiency for di- and tetra-cationic PSs 1a and 2a (6.0 µM), reducing the E. coli viability in 5.2 and 3.9 log, respectively (after 15 min of dark incubation before irradiation). For PS 3a, a similar bacterial reduction (3.6 log) was achieved but only with an extended dark incubation period (30 min). Under the same experimental conditions, the photodynamic effect of cationic PSs 1a-3a on S. aureus was even more promising, with abundance reductions of ca. 8.0 log after 45-60 min of PDI treatment. These results reveal the high PDI efficiency of PSs bearing ammonium groups and suggest their promising application as a broad-spectrum antimicrobial to control infections caused by Gram-negative and Gram-positive bacteria.


Subject(s)
Ammonium Compounds , Photochemotherapy , Porphyrins , Ammonium Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Indoles/pharmacology , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Staphylococcus aureus
7.
Molecules ; 27(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35630585

ABSTRACT

Metal-Organic Frameworks (MOFs) are hybrid multifunctional platforms that have found remarkable applications in cancer treatment and diagnostics. Independently, these materials can be employed in cancer treatment as intelligent drug carriers in chemotherapy, photothermal therapy, and photodynamic therapy; conversely, MOFs can further be used as diagnostic tools in fluorescence imaging, magnetic resonance imaging, computed tomography imaging, and photoacoustic imaging. One essential property of these materials is their great ability to fine-tune their composition toward a specific application by way of a judicious choice of the starting building materials (metal nodes and organic ligands). Moreover, many advancements were made concerning the preparation of these materials, including the ability to downsize the crystallites yielding nanoporous porphyrin MOFs (NMOFs) which are of great interest for clinical treatment and diagnostic theranostic tools. The usage of porphyrins as ligands allows a high degree of multifunctionality. Historically these molecules are well known for their reactive oxygen species formation and strong fluorescence characteristics, and both have proved helpful in cancer treatment and diagnostic tools. The anticipation that porphyrins in MOFs could prompt the resulting materials to multifunctional theranostic platforms is a reality nowadays with a series of remarkable and ground-breaking reports available in the literature. This is particularly remarkable in the last five years, when the scientific community witnessed rapid development in porphyrin MOFs theranostic agents through the development of imaging technologies and treatment strategies for cancer. This manuscript reviews the most relevant recent results and achievements in this particular area of interest in MOF chemistry and application.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Porphyrins , Humans , Ligands , Magnetic Resonance Imaging , Metal-Organic Frameworks/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Porphyrins/chemistry , Porphyrins/therapeutic use , Precision Medicine
8.
J Photochem Photobiol B ; 231: 112459, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35512577

ABSTRACT

The emergence of opportunistic pathogens and the selection of resistant strains have created a grim scenario for conventional antimicrobials. Consequently, there is an ongoing search for alternative techniques to control these microorganisms. One such technique is antimicrobial photodynamic therapy (aPDT), which combines photosensitizers, light, and molecular oxygen to produce reactive oxygen species and kill the target pathogen. Here, the in vitro susceptibilities of three fungal pathogens, namely Candida albicans, Aspergillus nidulans, and Colletotrichum abscissum to aPDT with zinc(II) phthalocyanine (ZnPc) derivative complexes were investigated. Three ZnPc bearing thiopyridinium substituents were synthesized and characterized by several spectroscopic techniques. The Q-band showed sensitivity to the substituent with high absorptivity coefficient in the 680-720 nm region. Derivatization and position of the rings with thiopyridinium units led to high antifungal efficiency of the cationic phthalocyanines, which could be correlated with singlet oxygen quantum yield, subcellular localization, and cellular uptake. The minimum inhibitory concentrations (MIC) of the investigated ZnPc-R complexes against the studied microorganisms were 2.5 µM (C. albicans) and 5 µM (A. nidulans and C. abscissum). One ZnPc derivative achieved complete photokilling of C. albicans and, furthermore, yielded low MIC values when used against the tolerant plant-pathogen C. abscissum. Our results show that chemical modification is an important step in producing better photosensitizers for aPDT against fungal pathogens.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Candida albicans , Isoindoles , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology
9.
Front Chem ; 10: 825716, 2022.
Article in English | MEDLINE | ID: mdl-35360535

ABSTRACT

Phthalocyanine (Pc) dyes are photoactive molecules that can absorb and emit light in the visible spectrum, especially in the red region of the spectrum, with great potential for biological scopes. For this target, it is important to guarantee a high Pc solubility, and the use of suitable pyridinium units on their structure can be a good strategy to use effective photosensitizers (PSs) for photodynamic therapy (PDT) against cancer cells. Zn(II) phthalocyanines (ZnPcs) conjugated with thiopyridinium units (1-3) were evaluated as PS drugs against B16F10 melanoma cells, and their photophysical, photochemical, and in vitro photobiological properties were determined. The photodynamic efficiency of the tetra- and octa-cationic ZnPcs 1-3 was studied and compared at 1, 2, 5, 10, and 20 µM. The different number of charge units, and the presence/absence of a-F atoms on the Pc structure, contributes for their PDT efficacy. The 3-(4',5'-dimethylthiazol-2'-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays on B16F10 melanoma cells show a moderate to high capacity to be photoinactivated by ZnPcs 1-3 (ZnPc 1 > ZnPc 2 > ZnPc 3). The best PDT conditions were found at a Pc concentration of 20 µM, under red light (λ = 660 ± 20 nm) at an irradiance of 4.5 mW/cm2 for 667 s (light dose of 3 J/cm2). In these conditions, it is noteworthy that the cationic ZnPc 1 shows a promising photoinactivation ratio, reaching the detection limit of the MTT method. Moreover, these results are comparable to the better ones in the literature.

10.
J Mater Chem B ; 10(17): 3248-3259, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35084012

ABSTRACT

Mesoporous silica nanoparticles (MSNPs) have attracted much attention in many biomedical applications. One of the fields in which smart functional nanosystems have found wide application is cancer treatment. Here, we present new silica nanoparticle-based systems which have been explored as efficient vehicles to transport and deliver photosensitizers (PSs) into tumor tissues during photodynamic therapy (PDT). In this work, we report the preparation, characterization, and in vitro studies of distinct shaped MSNPs grafted with S-glycoside porphyrins (Pors). The ensuing nanomaterials were fully characterized, and their properties as third-generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UM-UC-3, were examined. The best uptake results were obtained for MSNP-PS2, while MSNP-PS1 showed the lowest cellular uptake among the nanocarriers tested, but revealed the best phototoxicity in both cancer cells. Overall, the phototoxicity was higher with MSNPs than with mesoporous silica nanorods (MSNRs) and higher uptake and phototoxicity were consistently observed in UM-UC-3 rather than in HT-1376 cancer cells.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Neoplasms/drug therapy , Photosensitizing Agents/pharmacology , Porosity , Silicon Dioxide
11.
J Mater Chem B ; 9(45): 9285-9294, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34709285

ABSTRACT

Raman spectroscopy coupled with confocal microscopy offers an alternative bioimaging technique overcoming limitations associated with sensitivity, tissue penetration and image resolution. Allied to the surface-enhanced Raman scattering (SERS) properties of gold nanoparticles (AuNP), we designed SERS nanoprobes with enhanced properties and straightforward application as bio-labelling agents for gliomas. The ensuing nanoprobes coated with simple sugar units (galactose or glucose) allowed assessing information about their intracellular localization (vesicular structures), with impressive sensitivity towards complex environments and proved the ability to overcome biological auto-fluorescence and high penetration in tissues. We validate the use of sugars as an all-in-one vector (Raman reporter, conferring high stability, biocompatibility and affinity to glioma cells) as imaging agents using an impressive technique.


Subject(s)
Galactose/chemistry , Glucose/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Galactose/metabolism , Galectins/genetics , Galectins/metabolism , Glucose/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism
12.
Sensors (Basel) ; 21(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652615

ABSTRACT

Anionic species are one of the most common pollutants in residual and freshwaters. The presence of anthropogenic anions in water drastically increases the toxicity to living beings. Here, we report the preparation of a new optical active material based on tri(tosylamino)phthalocyanines grafted to ferromagnetic silica nanoparticles for anion detection and removal. The new unsymmetrical phthalocyanines (Pcs) proved to be excellent chemosensors for several anions (AcO-, Br-, Cl-, CN-, F-, H2PO4-, HSO4-, NO2-, NO3-, and OH-) in dimethyl sulfoxide (DMSO). Furthermore, the Pcs were grafted onto magnetic nanoparticles. The resulting novel hybrid material showed selectivity and sensitivity towards CN-, F-, and OH- anions in DMSO with limit of detection (LoD) of ≈4.0 µM. In water, the new hybrid chemosensor demonstrated selectivity and sensitivity for CN- and OH- anions with LoD of ≈0.2 µM. The new hybrids are easily recovered using a magnet, allowing recyclability and reusability, after acidic treatment, without losing the sensing proprieties.

13.
J Am Chem Soc ; 143(3): 1365-1376, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33433193

ABSTRACT

Porous robust materials are typically the primary selection of several industrial processes. Many of these compounds are, however, not robust enough to be used as multifunctional materials. This is typically the case of Metal-Organic Frameworks (MOFs) which rarely combine several different excellent functionalities into the same material. In this report we describe the simple acid-base postsynthetic modification of isotypical porous rare-earth-phosphonate MOFs into a truly multifunctional system, maintaining the original porosity features: [Ln(H3pptd)]·xSolvent [where Ln3+ = Y3+ (1) and (Y0.95Eu0.05)3+ (1_Eu)] are converted into [K3Ln(pptd)]·zSolvent [where Ln3+ = Y3+ (1K) and (Y0.95Eu0.05)3+ (1K_Eu)] by immersing the powder of 1 and 1_Eu into an ethanolic solution of KOH for 48 h. The K+-exchanged Eu3+-based material exhibits a considerable boost in CO2 adsorption, capable of being reused for several consecutive cycles. It can further separate C2H2 from CO2 from a complex ternary gas mixture composed of CH4, CO2, and C2H2. This high adsorption selectivity is, additionally, observed for other gaseous mixtures, such as C3H6 and C3H8, with all these results being supported by detailed theoretical calculations. The incorporation of K+ ions notably increases the electrical conductivity by 4 orders of magnitude in high relative humidity conditions. The conductivity is assumed to be predominantly protonic in nature, rendering this material as one of the best conducting MOFs reported to date.

14.
Photodiagnosis Photodyn Ther ; 31: 101788, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32479904

ABSTRACT

Photodynamic inactivation (PDI) of microorganisms has been used for the treatment of bacterial infection. PDI is based on the combination of three non-toxic elements: a photosensitizer (PS), light and molecular oxygen, which lead to the formation of reactive oxygen species (ROS) that cause lethal oxidative damage into the target pathogenic bacteria. For that, clinical approved tetrapyrrolic macrocycles, with particular emphasis on photoactive porphyrin (Por) dyes, have been used as PS in PDI for different biomedical applications. Two novel unsymmetrical free-base thiopyridyl Pors conjugated with α- or γ-CD units (Pors 2 and 3) were prepared and the corresponding cationic ones (Pors 2a and 3a) were assessed as water-soluble photosensitizer (PS) agents by photophysical, photochemical and E. coli photobiological studies. The presence of the CD unit and the positive charges on the Por periphery (2a and 3a) enhance their solubility in aqueous media. The photoactivity of the two cationic Pors 2a and 3a ensures their potential as PDI drugs against Gram-negative bacteria model, a bioluminescent E. coli, which the best PDI efficiency was determined for Por 3a that achieved the highest bacterial reduction of 4.0 log10 (ANOVA, p < 0.0001), reaching the detection limit of the method after 15 min.


Subject(s)
Cyclodextrins , Photochemotherapy , Porphyrins , Cyclodextrins/pharmacology , Escherichia coli , Light , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology
15.
Bioorg Chem ; 100: 103920, 2020 07.
Article in English | MEDLINE | ID: mdl-32413624

ABSTRACT

The G-quadruplex (G4)-forming sequence within the AS1411 derivatives with alternative nucleobases and backbones can improve the chemical and biological properties of AS1411. Zn(II) phthalocyanine (ZnPc) derivatives have potential as high-affinity G4 ligands because they have similar size and shape to the G-quartets. The interactions of four Zn(II) phthalocyanines with the G4 AS1411 aptamer and its derivatives were determined by biophysical techniques, molecular docking and gel electrophoresis. Cell viability assay was carried out to evaluate the antiproliferative effects of Zn(II) phthalocyanines and complexes. CD experiments showed structural changes after addition of ZnPc 4, consistent with multiple binding modes and conformations shown by NMR and gel electrophoresis. CD melting confirmed that ZnPc 2 and ZnPc 4, both containing eight positive charges, are able to stabilize the AT11 G4 structure (ΔTm > 30 °C and 18.5 °C, respectively). Molecular docking studies of ZnPc 3 and ZnPc 4 suggested a preferential binding to the 3'- and 5'-end, respectively, of the AT11 G4. ZnPc 3 and its AT11 and AT11-L0 complexes revealed pronounced cytotoxic effect against cervical cancer cells and no cytotoxicity to normal human cells. Zn(II) phthalocyanines provide the basis for the development of effective therapeutic agents as G4 ligands.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Indoles/chemistry , Indoles/pharmacology , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Cell Line , Cell Survival/drug effects , G-Quadruplexes , HeLa Cells , Humans , Isoindoles , Molecular Docking Simulation , Neoplasms/drug therapy , Zinc Compounds
16.
Molecules ; 25(8)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316272

ABSTRACT

In this work, we used the rigid tetrapodal organic linker, [1,1'-biphenyl]-3,3',5,5'-tetrayltetrakis(phosphonic acid) (H8btp), for the preparation of two lanthanide-organic framework families of compounds: layered [Ln7(H5btp)4(H5.5btp)2(H6btp)2(H2O)12]∙23.5H2O∙MeOH [where Ln3+ = Eu3+ (1Eu) and Gd3+ (1Gd)], prepared using microwave-irradiation followed by slow evaporation; 3D [Ln4(H3btp)(H4btp)(H5btp)(H2O)8]∙3H2O [where Ln3+ = Ce3+ (2Ce), Pr3+ (2Pr), and Nd3+ (2Nd)], obtained from conventional hydro(solvo)thermal synthesis. It is shown that in this system, by carefully selecting the synthetic method and the metal centers, one can increase the dimensionality of the materials, also increasing structural robustness (particularly to the release of the various solvent molecules). Compound 1 is composed of 2D layers stacked on top of each other and maintained by weak π-π interactions, with each layer formed by discrete 1D organic cylinders stacked in a typical brick-wall-like fashion, with water molecules occupying the free space in-between cylinders. Compound 2, on the other hand, is a 3D structure with small channels filled with crystallization water molecules. A full solid-state characterization of 1 and 2 is presented (FT-IR spectroscopy, SEM microscopy, thermogravimetric studies, powder X-ray diffraction and thermodiffractometry). The photoluminescence of 1Eu was investigated.


Subject(s)
Coordination Complexes/chemical synthesis , Organophosphonates/chemical synthesis , Coordination Complexes/chemistry , Molecular Conformation , Molecular Structure , Organophosphonates/chemistry , Powder Diffraction , Spectroscopy, Fourier Transform Infrared
17.
Molecules ; 25(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244514

ABSTRACT

Novel triazole-porphyrin derivatives (TZ-PORs) were synthesized through the Heck reaction and then incorporated into polyvinylpyrrolidone (PVP) micelles. After verifying that this incorporation did not compromise the photophysical and chemical features of TZ-PORs as photosensitizers, the phototoxicity of the formulations towards cancer cells was screened. Biological studies show high photodynamic activity of all PVP-TZ-POR formulations against a bladder cancer cell line with a particular highlight to PVP-TZ-POR 7e and 7f that are able to significantly reduce HT-1376 cell viability, while they had no effect on control ARPE-19 cells.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Porphyrins/chemistry , Triazoles/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Chemistry Techniques, Synthetic , Humans , Micelles , Photochemotherapy , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Povidone/chemistry
18.
Mol Pharm ; 17(6): 2145-2154, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32339462

ABSTRACT

Photodynamic therapy (PDT) has demonstrated encouraging anticancer therapeutic results, but the current clinically approved photosensitizers (PSs) are not ideal in the treatment of bladder cancer. Conventional PSs have low selectivity to the bladder tumor tissue and induce toxicity or bystander effects on nontumor urothelium. Previous studies demonstrated that the use of galactose-photosensitizer (PS) conjugates is a more selective method of delivering PDT-mediated toxicity due to their ability to recognize carbohydrate-binding domains overexpressed in bladder tumors. Using patient-derived bladder tumor specimens cultured ex vivo and bladder cancer cell lines with different PDT sensitivity, we find that a galactose-phthalocyanine (PcGal16) accumulates in bladder tumors expressing galactose-binding proteins and internalizes through an endocytic process. The endocytosis mechanism is cell line-dependent. In HT-1376 bladder cancer lines resistant to PDT, depletion of caveolin-1-the main structural protein of caveolae structures-increased the amount of sugar-binding proteins, i.e. GLUT1, at the cell membrane resulting in an improved PcGal16 uptake and PDT efficacy. These data show the potential of ex vivo cultures of bladder cancer, that ideally could mimic the original microenvironment, in screening galacto-PDT agents. Additionally, our studies demonstrate that PDT efficacy in bladder cancer depends on the endocytic mechanisms that regulate PS accumulation and internalization in cancer cells.


Subject(s)
Caveolin 1/metabolism , Indoles/chemistry , Indoles/therapeutic use , Photochemotherapy/methods , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/therapy , Aged , Blotting, Western , Caveolin 1/genetics , Cell Line, Tumor , Endocytosis/drug effects , Female , Galectin 1/genetics , Galectin 1/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Humans , In Vitro Techniques , Isoindoles , Male , Microscopy, Fluorescence
19.
Materials (Basel) ; 13(6)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168798

ABSTRACT

The impact of fullerene side chain functionalization with thiophene and carbazole groups on the device properties of bulk-heterojunction polymer:fullerene solar cells is discussed through a systematic investigation of material blends consisting of the conjugated polymer poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2';5',2″;5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD) as donor and C60 or C70 fulleropyrrolidines as acceptors. The photovoltaic performance clearly depended on the molecular structure of the fulleropyrrolidine substituents although no direct correlation with the surface morphology of the photoactive layer, as determined by atomic force microscopy, could be established. Although some fulleropyrrolidines possess favorable lowest unoccupied molecular orbital levels, when compared to the standard PC71BM, they originated OPV cells with inferior efficiencies than PC71BM-based reference cells. Fulleropyrrolidines based on C60 produced, in general, better devices than those based on C70, and we attribute this observation to the detrimental effect of the structural and energetic disorder that is present in the regioisomer mixtures of C70-based fullerenes, but absent in the C60-based fullerenes. These results provide new additional knowledge on the effect of the fullerene functionalization on the efficiency of organic solar cells.

20.
J Nucl Med ; 61(9): 1369-1375, 2020 09.
Article in English | MEDLINE | ID: mdl-32005776

ABSTRACT

Galectins are carbohydrate-binding proteins overexpressed in bladder cancer (BCa) cells. Dendritic galactose moieties have a high affinity for galectin-expressing tumor cells. We radiolabeled a dendritic galactose carbohydrate with 18F (18F-labeled galactodendritic unit 4) and examined its potential in imaging urothelial malignancies. Methods: The 18F-labeled first-generation galactodendritic unit 4 was obtained from its tosylate precursor. We conducted in vivo studies in a galectin-expressing UMUC3 orthotopic BCa model to determine the ability of 18F-labeled galactodendritic unit 4 to image BCa. Results: Intravesical administration of 18F-labeled galactodendritic unit 4 allowed specific accumulation of the carbohydrate radiotracer in galectin-1-overexpressing UMUC3 orthotopic tumors when imaged with PET. The 18F-labeled galactodendritic unit 4 was not found to accumulate in nontumor murine bladders. Conclusion: The 18F-labeled galactodendritic unit 4 and similar analogs may be clinically relevant and exploitable for PET imaging of galectin-1-overexpressing bladder tumors.


Subject(s)
Fluorine Radioisotopes/chemistry , Galactose/chemistry , Galectin 1/metabolism , Gene Expression Regulation, Neoplastic , Positron Emission Tomography Computed Tomography , Urinary Bladder Neoplasms/diagnostic imaging , Animals , Cell Line, Tumor , Galactose/pharmacokinetics , Humans , Isotope Labeling , Mice , Radiochemistry , Tissue Distribution , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...