Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(65): e202302090, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37621157

ABSTRACT

Cold plasma is gaining increasing attention as a novel tool to activate energy demanding chemical processes, including advanced reduction/oxidation processes (AROPs) of organic pollutants in water. The very complex milieu generated by discharges at the water/plasma interface comprises photons, strong oxidants and strong reductants which can be exploited for achieving the degradation of most any kind of pollutants. Despite the complexity of these systems, the powerful arsenal of mechanistic tools and chemical probes of physical organic chemists can be usefully applied to understand and develop plasma chemistry. Specifically, the added value of air plasma generated by in situ discharge with respect to ozonation (ex situ discharge) is demonstrated using phenol and various phenol derivatives and mechanistic evidence for the prevailing role of hydroxyl radicals in the initial attack is presented. On the reduction front, the impressive performance of cold plasma in inducing the degradation of recalcitrant perfluoroalkyl substances, which do not react with OH radicals but are attacked by electrons, is reported and discussed. The widely different reactivities of perfluorooctanoic acid (PFOA) and of perfluorobutanoic acid (PFBA) underline the crucial role played in these processes by the interface between plasma and solution and the surfactant properties of the treated pollutants.

2.
Chemosphere ; 341: 139972, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37640214

ABSTRACT

Non-thermal plasma is a promising tool for novel technologies to treat water contaminated by recalcitrant pollutants. We report here on products, reactive species and mechanisms of the efficient degradation of perfluorooctanoic acid (PFOA) achieved with a self-pulsing discharge developed previously in our lab. Air or argon were used as plasma feed gas, ultrapure or tap water as aqueous medium. Identified organic intermediate products arise from chain-shortening and defluorination reactions, the latter achieving not only C-F to C-H exchange (hydro-de-fluorination), as reported in the literature, but also C-F to C-OH exchange (hydroxy-de-fluorination). In contrast with chain-shortening, yielding lower homologues of PFOA via selective cleavage of the C-C bond at the carboxylate group, defluorination occurs at various sites of the alkyl chain giving mixtures of different isomeric products. Plasma generated reactive species were investigated under all experimental conditions tested, using specific chemical probes and optical emission spectroscopy. Cross-analysis of the results revealed a striking direct correlation of energy efficiency for PFOA degradation and for production of plasma electrons. In contrast, no correlation was observed for emission bands of either Ar+ or OH radical. These results indicate a prevalent role of plasma electrons in initiating PFOA degradation using self-pulsing discharge plasma above the liquid.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/chemistry , Caprylates/chemistry , Carboxylic Acids , Water , Water Pollutants, Chemical/chemistry
3.
Chemosphere ; 307(Pt 2): 135800, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35931256

ABSTRACT

Atmospheric plasma offers a viable approach to new water remediation technologies, best suited for the degradation of persistent organic pollutants such as PFAS, per- and polyfluoroalkyl substances. This paper reports on the remarkable performance of a novel RAdial Plasma (RAP) discharge reactor in treating water contaminated with PFAS surfactants, notably the ubiquitous perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). RAP proved to be versatile and robust, performing very well over a wide range of pollutants concentrations. Thus, PFOA degradation was most satisfactory with regard to all critical indicators, kinetics (≥99% PFOA conversion in less than 2.5 min and 30 min in solutions with initial concentrations of 41 µg/L and 41 mg/L, respectively), byproducts, and energy efficiency (G50 greater than 2000 mg/kWh for 41 µg/L - 4.1 mg/L PFOA initial concentrations). Likewise for PFOS as well as for Triton X-100, a common fluorine-free non-ionic surfactant tested to explore the scope of applicability of RAP to the degradation of surfactants in general. The results obtained with RAP compare most favourably with those reported for state-of-art plasma systems in similar experiments. RAP's excellent performance is attributed to the dense network of radial discharges it generates, randomly spread over the entire exposed surface of the liquid thus establishing an extended highly reactive plasma-liquid interface with both strongly reducing and oxidizing species. Mechanistic insight is offered based on the observed degradation products and on available literature data on the surfactants properties and on their plasma induced degradation investigated in previous studies.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Water Pollutants, Chemical , Caprylates , Fluorocarbons/analysis , Octoxynol , Persistent Organic Pollutants , Surface-Active Agents , Water , Water Pollutants, Chemical/analysis
4.
J Environ Manage ; 301: 113885, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34619592

ABSTRACT

Cold plasma based treatment of contaminated water is becoming a promising novel green remediation option. This study assessed the performance of two different cold plasma reactors, using, respectively, a self-pulsing discharge (SPD) and a multipin corona discharge (MCD), in the degradation of dimethyl phthalate (DMP), a persistent and ubiquitous pollutant of the aquatic environment. The process kinetics and energy efficiency, as well as the main plasma generated reactive species were determined under various operating conditions concerning the plasma feed gas and flowrate, the voltage polarity, the input power, the DMP initial concentration, the liquid conductivity, and the aqueous matrix used to prepare DMP solutions for these experiments. The MCD reactor, operated with air as plasma feed gas and negative voltage polarity, gave the best results in terms of rate and energy efficiency. Moreover, variations in plasma input power and in the liquid conductivity have limited effect on DMP degradation rate, making this reactor suitable for treating liquids with a range of initial conductivities The effects of DMP initial concentration on its rate of degradation and on the process energy efficiency were also investigated. Differences in the efficiency of production and distribution of plasma generated reactive species, notably •OH and H2O2, observed for the two tested reactors are discussed in terms of different extension of the plasma/liquid interface and diffusion into the bulk solution. It is proposed that among the reactive species, •OH foremost, and O3 to a lesser extent, play a pivotal role in DMP degradation, while the contribution of H2O2 appears to be limited. The rate of DMP degradation was not drastically different in Milli-Q water and in tap water, a positive outcome in view of practical applications of the technology. The lower rate observed in tap than in Milli-Q water is attributed to the presence of bicarbonate and carbonate, which are known scavengers of hydroxyl radicals.


Subject(s)
Phthalic Acids , Water Pollutants, Chemical , Hydrogen Peroxide , Kinetics , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...