Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 167: 197-204, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25148979

ABSTRACT

The present study investigated the phenolic profiles of the pulp and peel of nine plantain cultivars and compared them to those of two dessert bananas of commercial interest (Grand Nain and Gros Michel), alongside a newly created hybrid, resistant to black sigatoka disease (F568). Identification and quantification of phenolic compounds were performed by means of HPLC-ESI-HR-MS and HPLC-DAD. Hydroxycinnamic acids, particularly ferulic acid-hexoside with 4.4-85.1 µg/g of dry weight, dominated in the plantain pulp and showed a large diversity among cultivars. Flavonol glycosides were predominant in plantain peels, rutin (242.2-618.7 µg/g of dry weight) being the most abundant. A principal component analysis on the whole data revealed that the phenolic profiles of the hybrid, the dessert bananas and the pure plantains differed from each other. Plantain pulps and peels appeared as good sources of phenolics, which could be involved in the health benefits associated with their current applications.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Musa/chemistry , Phenols/analysis , Plantago/chemistry , Coumaric Acids , Flavonols
2.
J Agric Food Chem ; 62(34): 8705-15, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25101926

ABSTRACT

This study aimed at understanding the contribution of the fruit physicochemical parameters to Musa sp. diversity and plantain ripening stages. A discriminant analysis was first performed on a collection of 35 Musa sp. cultivars, organized in six groups based on the consumption mode (dessert or cooking banana) and the genomic constitution. A principal component analysis reinforced by a logistic regression on plantain cultivars was proposed as an analytical approach to describe the plantain ripening stages. The results of the discriminant analysis showed that edible fraction, peel pH, pulp water content, and pulp total phenolics were among the most contributing attributes for the discrimination of the cultivar groups. With mean values ranging from 65.4 to 247.3 mg of gallic acid equivalents/100 g of fresh weight, the pulp total phenolics strongly differed between interspecific and monospecific cultivars within dessert and nonplantain cooking bananas. The results of the logistic regression revealed that the best models according to fitting parameters involved more than one physicochemical attribute. Interestingly, pulp and peel total phenolic contents contributed in the building up of these models.


Subject(s)
Fruit/growth & development , Musa/chemistry , Plant Extracts/analysis , Plantago/chemistry , Fruit/chemistry , Gallic Acid/analysis , Musa/growth & development , Phenols/analysis , Plantago/growth & development
3.
Proc Natl Acad Sci U S A ; 108(28): 11311-8, 2011 Jul 12.
Article in English | MEDLINE | ID: mdl-21730145

ABSTRACT

Original multidisciplinary research hereby clarifies the complex geodomestication pathways that generated the vast range of banana cultivars (cvs). Genetic analyses identify the wild ancestors of modern-day cvs and elucidate several key stages of domestication for different cv groups. Archaeology and linguistics shed light on the historical roles of people in the movement and cultivation of bananas from New Guinea to West Africa during the Holocene. The historical reconstruction of domestication processes is essential for breeding programs seeking to diversify and improve banana cvs for the future.


Subject(s)
Crops, Agricultural/history , Musa/genetics , Africa , Agriculture/history , Archaeology , Breeding/history , Crops, Agricultural/classification , Crops, Agricultural/genetics , Diploidy , Genetic Speciation , Genetic Variation , History, Ancient , Musa/classification , New Guinea , Phylogeny , Phylogeography , Polyploidy
4.
J Agric Food Chem ; 55(7): 2633-44, 2007 Apr 04.
Article in English | MEDLINE | ID: mdl-17346062

ABSTRACT

The variability in fruit micronutrient contents in a selection of Central and West African Musa varieties cultivated under standardized field conditions was studied. Analysis of the within-fruit, within-hand, and within-plant as well as the between-plant variations demonstrated that both provitamin A carotenoids (pVACs) and mineral micronutrient (Fe, Zn) contents vary significantly across all sample groups. The variations in pVACs contents appear to be at least partly related to differences in the developmental status of the fruit, but the observed trends were genotype-specific. The mean pVACs concentrations per genotype indicated that there is substantial genetic variation in the fruit pVACs contents between Musa cultivars, with orange-fleshed plantain varieties (AAB) having generally higher fruit pVACs contents than dessert bananas (AAA). It was not possible to identify consistent trends between the sampling position and fruit Fe/Zn contents. Once the within-bunch micronutrient variability has been accounted for, the mean variations in fruit micronutrient contents between individual plants of a variety generally fell to within acceptable limits. Results are discussed within the framework of standardizing sampling and developing strategies to screen for the nutritional values of new and existing Musa varieties.


Subject(s)
Fruit/chemistry , Micronutrients/analysis , Musa/chemistry , Plantago/chemistry , Africa, Central , Africa, Western , Carotenoids/analysis , Iron/analysis , Nutritive Value , Vitamin A/analysis , Zinc/analysis
5.
Evolution ; 45(2): 359-370, 1991 Mar.
Article in English | MEDLINE | ID: mdl-28567868

ABSTRACT

Tetraploid individuals of orchardgrass (Dactylis glomerata L. subsp. hispanica Roth.) sampled from a natural population were used to evaluate the correlation between both single and multilocus heterozygosity at 7 enzyme loci, and several quantitative traits (plant size at time of collection, leaf weight, and panicle number in experimental trials). Four hundred and forty-eight plants were studied at the 7 loci and 288 of these individuals were scored for an additional eighth locus. Five genotype classes (monogenic, simplex, and duplex digenic, trigenic, and tetragenic) were distinguished according to their heterozygosity level. Multilocus heterozygosity showed a significant positive correlation with both leaf and panicle yield in experimental conditions, but not with original plant size, which was found to be markedly influenced by environmental microheterogeneity. Multilocus heterozygosity, estimated from both the number of heterozygous loci and the number of distinct alleles per locus, had a significant influence on plant performance. Individual locus effects were positive and significant at two loci (GOT1 and PX1). Panicle number increased regularly with heterozygosity level (from monogenics to tetragenics) at the GOT1 locus, as did leaf weight and panicle number at the PX1 locus. Such variation would be predicted by overdominance at these loci or at linked loci. Significant relationships between leaf yield and heterozygosity level at the GOT1 locus distinguished the homozygotes from the heterozygotes (of any class) and was thus more consistent with inbreeding effects. No significant differences were observed among the five genotype classes for any quantitative trait at the six remaining loci. At both the GOT1 and PX1 loci, heterozygosity had a significant independent effect on leaf weight and panicle number even when the correlation between these traits was removed by analysis of covariance.

SELECTION OF CITATIONS
SEARCH DETAIL
...