Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Hum Brain Mapp ; 33(3): 740-52, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21484952

ABSTRACT

Structural and functional studies have shown that schizophrenia is often associated with frontolimbic abnormalities in the prefrontal and mediotemporal regions. It is still unclear, however, if such dysfunctional interaction extends as well to relay regions such as the thalamus and the anterior insula. Here, we measured gray matter volumes of five right-hemisphere regions in 68 patients with schizophrenia and 77 matched healthy subjects. The regions were amygdala, thalamus, and entorhinal cortex (identified as anomalous by prior studies on the same population) and dorsolateral prefrontal cortex and anterior insula (isolated by voxel-based morphometry analysis). We used structural equation modeling and found altered path coefficients connecting the thalamus to the anterior insula, the amygdala to the DLPFC, and the entorhinal cortex to the DLPFC. In particular, patients exhibited a stronger thalamus-insular connection than healthy controls. Instead, controls showed positive entorhinal-DLPFC and negative amygdalar-DLPFC connections, both of which were absent in the clinical population. Our data provide evidence that schizophrenia is characterized by an impaired right-hemisphere network, in which intrahemispheric communication involving relay structures may play a major role in sustaining the pathophysiology of the disease.


Subject(s)
Brain Mapping/methods , Brain/pathology , Models, Theoretical , Schizophrenia/pathology , Adult , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Models, Neurological , Neural Pathways
3.
Prog Neuropsychopharmacol Biol Psychiatry ; 35(4): 1093-9, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21420463

ABSTRACT

BACKGROUND: Schizophrenia (SCZ) and bipolar disorder (BD) share some cognitive commonalities. However, the role of associative learning, which is a cornerstone of human cognition mainly relying on hippocampus, has been under-investigated. We assessed behavioral performance during associative learning in a group of SCZ, BD and healthy controls (HC). METHODS: Nineteen patients with SCZ (36 ± 8.1 years; 13 males, 6 females; all Caucasians), 14 patients with BD (41 ± 9.6 years; 5 males, 9 females; all Caucasians) and 45 HC (27.7 ± 6.9 years; 18 males, 27 females; all Caucasians) were studied. Learning was assessed using an established object-location paired-associative learning paradigm. Subjects learned associations between nine equi-familiar common objects and locations in a nine-location grid. Performance data were analyzed in a repeated measures analysis of variance with time (repeated) and group as factors. RESULTS: Learning curves (performance = (1-e(-k x time)) fitted to average performance data in the three groups revealed lower learning rates in SCZ and BD (k = 0.17 and k = 0.34) than HC (k = 0.78). Significant effects of group (F = 11.05, p < 0.001) and time (F = 122.06, p < 0.001) on learning performance were observed. CONCLUSIONS: Our study showed that associative learning is impaired in both SCZ and BD, being potentially not affected by medication. Future studies should investigate the neural substrates of learning deficits in SCZ and BD, particularly focusing on hippocampus function and glutamatergic transmission.


Subject(s)
Association Learning/physiology , Bipolar Disorder/psychology , Schizophrenic Psychology , Adult , Aging/psychology , Data Interpretation, Statistical , Diagnostic and Statistical Manual of Mental Disorders , Female , Hippocampus/physiology , Humans , Intelligence , Male , Mental Recall/physiology , Neuronal Plasticity/drug effects , Psychomotor Performance/physiology , Serial Learning/physiology
4.
Eur Neuropsychopharmacol ; 19(12): 835-40, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19717283

ABSTRACT

Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology.


Subject(s)
Antipsychotic Agents/pharmacology , Brain/drug effects , Brain/pathology , Schizophrenia/pathology , Adult , Antipsychotic Agents/therapeutic use , Brain Mapping , Community Health Services , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Psychiatric Status Rating Scales , Psychometrics , Schizophrenia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...