Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120279, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34438118

ABSTRACT

A new Schiff base 2-ethoxy-3-{[(6-{[(2-ethoxy-4-hydroxy-2H-chromen-3-yl)methylidene]amino}pyridine-2-yl)imino]methyl}-2H-chromen-4-ol (CD) was synthesized as a result of the condensation of 2,6-diaminopyridine and 3-formyl chromone in 1:2 M ratio and used for cupric ions detection and characterized through FTIR, HRMS and 1H NMR spectral techniques. The sensing capability of Schiff base for cupric ions as compared to other transition metal ions was examined by absorbance and emission studies. A considerable decrease in emission intensity appeared in Schiff base in the case of cupric ions while irrelevant changes were examined for the rest of the ions. The binding stoichiometry was obtained as 1:2 for CD: Cu2+ complex intended from the job's plot which was confirmed through HRMS spectral technique. DFT calculations were carried for the confirmation of structural relationships and absorption-emission data. The Regression coefficient, Limit of detection, and Association constant were obtained as 98.7%, 1.2 × 10-6 M, and 3.26 × 104 M-1 respectively using Benesi-Hildebrand (B-H) equation. The sensing power of Schiff base CD to recognize cupric ions was unaltered by the addition of the rest of metal ions, which was authenticated through interference studies. Schiff base CD and its complex with cupric ions were found stable over an extensive time period as revealed by time-reliant studies. The data collected by pH studies revealed that the preferred pH range for detecting cupric ions by Schiff base CD was 6 to 11. The Schiff base was finally utilized for sensing cupric ions in a variety of spiked samples of water like canal water, tap water, groundwater, distilled water.


Subject(s)
Chromones , Fluorescent Dyes , Ions , Pyridines , Spectrometry, Fluorescence
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119221, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33257246

ABSTRACT

Exploring a new multi-responsive pyranone chemosensor capable of sensing copper ions specifically and selectively through colorimetric, UV-Vis absorption and fluorescence methods is of great importance. In this piece of work, a novel pyranone based Schiff base ligand 4-Hydroxy-6-methyl-3-[1-(2-morpholin-4-yl-ethylimino)-ethyl]-pyran-2-one (DM) was synthesized by the condensation of dehydroacetic acid and 4-(2-aminoethyl) morpholine. The structural determination of ligand DM was executed using distinct spectral techniques i.e.,1H NMR, 13C NMR, FT-IR and HR-MS techniques. The reported Schiff base DM showed an immediate colorimetric change from pale yellow to colorless accompanied by a strong change in the UV-Vis absorption band onto the addition of Cu (II) ions. This metal ligand chelation leads a decrease in ICT process. Also the decrease in fluorescence emission intensity of Schiff base DM with Cu (II) ions addition showed its turn-off behavior towards copper ions. Further absorption/ emission titration studies, Job's plot, HR-MS and 1H NMR titration data designated 2:1 stoichiometric ratio between DM and Cu (II) ions respectively. Density functional theory studies were also performed to authenticate the binding mechanism theoretically. The sensitivity of Schiff base DM towards Cu (II) ions was applicable at every pH conditions and at the same time DM exhibited selectivity towards Cu (II) ions with a negligible interference of other metal ions. DM showed a detection limit of 7.7 nM towards copper ions via fluorescence emission studies. The best part about DM is that it has good stability but showed an instant chemical reversibility when titrated with EDTA solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...