Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(2): 601-606, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38180909

ABSTRACT

Electronic spectra of solids subjected to a magnetic field are often discussed in terms of Landau levels and Hofstadter-butterfly-style Brown-Zak minibands manifested by magneto-oscillations in two-dimensional electron systems. Here, we present the semiclassical precursors of these quantum magneto-oscillations which appear in graphene superlattices at low magnetic field near the Lifshitz transitions and persist at elevated temperatures. These oscillations originate from Aharonov-Bohm interference of electron waves following open trajectories that belong to a kagome-shaped network of paths characteristic for Lifshitz transitions in the moire superlattice minibands of twistronic graphenes.

2.
Nano Lett ; 22(10): 4269-4275, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35507698

ABSTRACT

Holes in germanium nanowires have emerged as a realistic platform for quantum computing based on spin qubit logic. On top of the large spin-orbit coupling that allows fast qubit operation, nanowire geometry and orientation can be tuned to cancel out charge noise and hyperfine interaction. Here, we demonstrate a scalable approach to synthesize and organize Ge nanowires on silicon (100)-oriented substrates. Germanium nanowire networks are obtained by selectively growing on nanopatterned slits in a metalorganic vapor phase epitaxy system. Low-temperature electronic transport measurements are performed on nanowire Hall bar devices revealing high hole doping of ∼1018 cm-3 and mean free path of ∼10 nm. Quantum diffusive transport phenomena, universal conductance fluctuations, and weak antilocalization are revealed through magneto transport measurements yielding a coherence and a spin-orbit length of the order of 100 and 10 nm, respectively.

3.
Phys Rev Lett ; 128(5): 057702, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179933

ABSTRACT

A unique feature of the complex band structures of moiré materials is the presence of minivalleys, their hybridization, and scattering between them. Here, we investigate magnetotransport oscillations caused by scattering between minivalleys-a phenomenon analogous to magnetointersubband oscillations-in a twisted double bilayer graphene sample with a twist angle of 1.94°. We study and discuss the potential scattering mechanisms and find an electron-phonon mechanism and valley conserving scattering to be likely. Finally, we discuss the relevance of our findings for different materials and twist angles.

SELECTION OF CITATIONS
SEARCH DETAIL
...