Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Cent Sci ; 10(2): 264-271, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38435510

ABSTRACT

To realize an energy storage transition beyond Li-ion competitive technologies, earth-abundant elements, such as Mg, are needed. Carborane anions are particularly well-suited to realizing magnesium-ion batteries (MIBs), as their inert and weakly coordinating properties beget excellent electrolyte performance. However, utilizing these materials in actual electrochemical cells has been hampered by the reliance on the Mg2+ salts of the commercially available [HCB11H11]- anion, which is not soluble in more weakly binding solvents apart from the higher glymes. Herein, we demonstrate it is possible to iteratively engineer the [HCB11H11]- anion surface synthetically to address previous solubility issues and yield a highly conductive (up to 7.33 mS cm-1) and electrochemically stable (up to +4.2 V vs Mg2+/0) magnesium electrolyte that surpasses the state of the art. This novel non-nucleophilic electrolyte exhibits highly dissociative behavior regardless of concentration and is tolerant of prolonged periods of cycling in symmetric cells at high current densities (up to 2.0 mA cm-2, 400 h). The hydrocarbon functionalized carborane electrolyte presented here demonstrates >96% Coulombic efficiency when paired with a Mo6S8 cathode. This approach realizes a needed candidate to discover next-generation cathode materials that can enable the design of practical and commercially viable Mg batteries.

2.
Angew Chem Int Ed Engl ; 61(51): e202208158, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36302076

ABSTRACT

Realization of practical sodium metal batteries (SMBs) is hindered due to lack of compatible electrolyte components, dendrite propagation, and poor understanding of anodic interphasial chemistries. Chemically robust liquid electrolytes that facilitate both favorable sodium metal deposition and a stable solid-electrolyte interphase (SEI) are ideal to enable sodium metal and anode-free cells. Herein we present advanced characterization of a novel fluorine-free electrolyte utilizing the [HCB11 H11 ]1- anion. Symmetrical Na cells operated with this electrolyte exhibit a remarkably low overpotential of 0.032 V at a current density of 2.0 mA cm-2 and a high coulombic efficiency of 99.5 % in half-cell configurations. Surface characterization of electrodes post-operation reveals the absence of dendritic sodium nucleation and a surprisingly stable fluorine-free SEI. Furthermore, weak ion-pairing is identified as key towards the successful development of fluorine-free sodium electrolytes.

3.
ACS Appl Mater Interfaces ; 11(12): 11414-11420, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30860349

ABSTRACT

An essential requirement for electrolytes in rechargeable magnesium-ion (Mg-ion) batteries is to enable Mg plating-stripping with low overpotential and high Coulombic efficiency. To date, the influence of the Mg/electrolyte interphase on plating and stripping behaviors is still not well understood. In this study, we investigate the Mg/electrolyte interphase from electrolytes based on two Mg salts with weakly coordinating anions: magnesium monocarborane (Mg(CB11H12)2) and magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2). Cyclic voltammetry and chronopotentiometry of Mg plating-stripping demonstrate significantly lower overpotential in the Mg(CB11H12)2 electrolyte than in Mg(TFSI)2 under the same condition. Surface characterizations including X-ray photoelectron spectroscopy and scanning electron microscopy clearly demonstrate the superior chemical and electrochemical stability of the Mg(CB11H12)2 electrolyte at the Mg surface without noticeable interphase formation. On the other hand, characterizations of the Mg/electrolyte interface in the Mg(TFSI)2 electrolyte indicate the formation of magnesium oxide, magnesium sulfide, and magnesium fluoride as the interfacial compounds resulting from the decomposition of TFSI- anions because of both chemical reduction by Mg and cathodic reduction during Mg deposition.

4.
Chem Commun (Camb) ; 55(12): 1684-1701, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30666325

ABSTRACT

This feature article covers new directions in the fundamental and applied chemistry of the closo-carborane anions [HCB11H11]- and [HCB9H9]-, as well as some related chemistry with the dicarbolide ion [H2C2B9]2-. Specifically the manuscript will focus on summarizing the authors' as well as related novel contributions to the field. The application of such clusters as solution based electolytes for Mg batteries and related materials for ionic liquids will be discussed. In addition, the preparation of heterocycles and radicals fused to carborane anions will be discussed as well as various novel chemical transformations. Furthermore, new developments in anionic carboranyl phosphines and N-heterocyclic carbenes in the context of catalysis will be summarized.

SELECTION OF CITATIONS
SEARCH DETAIL