Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
In Vivo ; 37(2): 591-595, 2023.
Article in English | MEDLINE | ID: mdl-36881078

ABSTRACT

BACKGROUND/AIM: The inflammatory response plays an important role in the activation and progression of many inflammation-related diseases. Cannabis sativa and Morinda citrifolia have long been used in folk medicine to treat inflammation. Cannabidiol is the most abundant non-psychoactive phytocannabinoid in C. sativa and exhibits anti-inflammatory activity. The objective of this study was to examine the anti-inflammatory effect of cannabidiol in combination with M. citrifolia and compare its effects with those of cannabidiol alone. MATERIALS AND METHODS: RAW264 cells stimulated with lipopolysaccharide (200 ng/ml) were treated with cannabidiol (0-10 µM), M. citrifolia seed extract (0-100 µg/ml), or a combination of both for 8 or 24 h. Following the treatments, nitric oxide production in the activated RAW264 cells and the expression of inducible nitric oxide synthase were assessed. RESULTS: Our results showed that combination of cannabidiol (2.5 µM) and M. citrifolia seed extract (100 µg/ml) exhibited more efficient inhibition of nitric oxide production than cannabidiol treatment alone in lipopolysaccharide-stimulated RAW264 cells. The combination treatment also reduced the expression of inducible nitric oxide synthase. CONCLUSION: These results suggest that the anti-inflammatory effect of combined treatment with cannabidiol and M. citrifolia seed extract causes a reduction in the expression of inflammatory mediators.


Subject(s)
Cannabidiol , Morinda , Cannabidiol/pharmacology , Lipopolysaccharides , Nitric Oxide , Nitric Oxide Synthase Type II , Inflammation/drug therapy , Macrophages , Plant Extracts/pharmacology
2.
Medicines (Basel) ; 8(8)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34436222

ABSTRACT

Leaves of Morinda citrifolia (noni) have been used in Polynesian folk medicine for the treatment of pain and inflammation, and their juice is very popular worldwide as a functional food supplement. This study aimed to demonstrate that M. citrifolia seed extract exerts anti-inflammatory effects on RAW264 cells stimulated by lipopolysaccharide. To confirm the inhibitory effect of M. citrifolia seed extract, we assessed the production of nitric oxide (NO) and inflammatory cytokines. The M. citrifolia seed extract showed a significant inhibition of NO production, with no effect on cell viability, and was more active than M. citrifolia seed oil, leaf extract, and fruit extract. The M. citrifolia seed extract was found to reduce the expression of inducible NO synthase and tumor necrosis factor-alpha of pro-inflammatory cytokines. These results suggest that the anti-inflammatory effect of M. citrifolia seed extract is related to a reduction in the expression of inflammatory mediators and support its potential therapeutic use.

3.
Medicines (Basel) ; 7(9)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906708

ABSTRACT

Background: Hemp (Cannabis sativa L.) seed contains high contents of various nutrients, including fatty acids and proteins. Cannabidiol (CBD) is a non-psychoactive compound that can be extracted from C. sativa and used for treating epilepsy and pain. Industrial hemp products, including CBD and hemp seed oils, have become increasingly popular. Some products are marketed without a clear distinction between CBD and hemp seed oils. Herein, the CBD content and biological activities of commercial CBD and hemp seed oils were examined. Methods: CBD content was measured by high-performance liquid chromatography. For in vitro antioxidant activity determination, 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging assays were performed. Results: The CBD concentrations in the two CBD oil samples were 18.9 ± 0.5 and 9.2 ± 0.4 mg/mL. Of the seven hemp seed oil samples, six samples contained CBD in concentrations ranging from 2.0 ± 0.1 to 20.5 ± 0.5 µg/mL, but it was not detected in one sample. Antioxidant activity was observed in both CBD oil samples. Conclusions: The results indicate that (1) CBD content varied by hemp seed oil sample and that (2) antioxidant activity could be a useful landmark for discriminating CBD oils from hemp seed oils.

SELECTION OF CITATIONS
SEARCH DETAIL
...