Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 42(10): 1975-1987, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35567409

ABSTRACT

It has long been debated whether tree leaves from shady environments exhibit higher photosynthetic induction efficiency (IE) than those from sunny environments and how the shade tolerance of tree species and the light environment of leaves contribute to the dynamics of photosynthesis. To address these questions, we investigated leaf photosynthetic responses to simulated changes of light intensity in seedlings of six tree species with differential shade tolerance. The seedlings were growing under different light environments in a lowland tropical forest. We proposed an index of relative shade tolerance (RST) to assess species-specific capacity to tolerate shade, and we quantified the light environment of individual leaves by the index of daily light integral (DLI), the averaged daily total light intensity. We obtained the following results. Photosynthetic IE, which is the ratio of the achieved carbon gain to the expected carbon gain, was significantly higher for species with a higher RST than for that with a lower RST. The impacts of light environment on the IE of individual leaves within the same species varied largely among different species. In the three species with relatively low RST, the IE of individual leaves decreased at higher DLIs when DLI < 10 mol m-2 d-1. Seedlings with high initial stomatal conductance before induction (gs50) possessed a higher IE than those with low gs50 from the same species. A trade-off existed between IE and steady-state photosynthetic rates. These results suggest a complex interaction between the shade tolerance of species and the light environments of individual leaves for photosynthetic induction and provide new insights into the adaptation strategy for understory seedlings under sunfleck environments.


Subject(s)
Seedlings , Trees , Carbon , Photosynthesis/physiology , Plant Leaves/physiology , Seedlings/physiology , Trees/physiology
2.
Tree Physiol ; 39(3): 474-483, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30053250

ABSTRACT

Long-term high CO2 exposure accelerates photosynthetic induction response due to rapid light increase. However, it is unclear whether the acceleration is caused by acclimation of photosynthetic components (long-term CO2 effect) and/or by the sufficient substrate under high CO2 at the measurement (short-term CO2 effect). Populus koreana × trichocarpa cv. Peace has wide-open stomata almost not responding to changes of photon flux density. Using this species, we examined the long- and short-term CO2 effects on photosynthetic induction by focusing on biochemical components. We grew the plants under [CO2] of 380, 700 and 1020 µmol CO2 mol-1 air and measured the photosynthetic induction response under [CO2] of 380 and 1020 µmol CO2 mol-1 air. Despite significant reduction in Rubisco content and light-saturated photosynthetic rate in the leaves from the high growth CO2, the photosynthetic induction time was similar in leaves from different growth CO2 plants when measurement [CO2] was the same. The induction, however, was significantly fast at the higher than at the lower measurement [CO2], regardless of growth CO2 of the plants. These results demonstrate that the acceleration of apparent photosynthetic induction under high CO2 environment was mainly contributed by a short-term CO2 effect rather than by a long-term acclimation effect when stomatal limitation is not the major factor.


Subject(s)
Carbon Dioxide/metabolism , Photosynthesis , Plant Stomata/metabolism , Populus/metabolism
3.
J Plant Res ; 129(3): 365-77, 2016 May.
Article in English | MEDLINE | ID: mdl-27094437

ABSTRACT

Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.


Subject(s)
Carbon Dioxide/pharmacology , Carbon/metabolism , Environment , Photosynthesis/drug effects , Light , Photosynthesis/radiation effects , Time Factors
4.
Tree Physiol ; 34(9): 944-54, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25187569

ABSTRACT

Understory plants in tropical forests often experience a low-light environment combined with high CO2 concentration. We hypothesized that the high CO2 concentration may compensate for leaf carbon loss caused by the low light, through increasing light-use efficiency of both steady-state and dynamic photosynthetic properties. To test the hypothesis, we examined CO2 gas exchange in response to an artificial lightfleck in Dipterocarpus sublamellatus Foxw. seedlings under contrasting CO2 conditions: 350 and 700 µmol CO2 mol(-1) air in a tropical rain forest, Pasoh, Malaysia. Total photosynthetic carbon gain from the lightfleck was about double when subjected to the high CO2 when compared with the low CO2 concentration. The increase of light-use efficiency in dynamic photosynthesis contributed 7% of the increased carbon gain, most of which was due to reduction of photosynthetic induction to light increase under the high CO2. The light compensation point of photosynthesis decreased by 58% and the apparent quantum yield increased by 26% at the high CO2 compared with those at the low CO2. The study suggests that high CO2 increases photosynthetic light-use efficiency under both steady-state and fluctuating light conditions, which should be considered in assessing the leaf carbon gain of understory plants in low-light environments.


Subject(s)
Carbon Dioxide/metabolism , Carbon/metabolism , Dipterocarpaceae/metabolism , Light , Photosynthesis , Malaysia , Plant Leaves/metabolism , Rainforest , Seedlings/metabolism , Trees/metabolism
5.
Oecologia ; 169(4): 869-78, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22302511

ABSTRACT

To understand dynamic photosynthetic characteristics in response to fluctuating light under a high CO(2) environment, we examined photosynthetic induction in two poplar genotypes from two species, Populus koreana 9 trichocarpa cv. Peace and Populus euramericana cv. I-55, respectively. Stomata of cv. Peace barely respond to changes in photosynthetic photon flux density (PFD), whereas those of cv. I-55 show a normal response to variations in PFD at ambient CO(2). The plants were grown under three CO2 regimes (380, 700, and 1,020 µmol CO(2) mol(-1) in air) for approximately 2 months. CO2 gas exchange was measured in situ in the three CO2 regimes under a sudden PFD increase from 20 to 800 µmol m(-2) s(-1). In both genotypes, plants grown under higher CO(2) conditions had a higher photosynthetic induction state, shorter induction time, and reduced induction limitation to photosynthetic carbon gain. Plants of cv. I-55 showed a much larger increase in induction state and decrease in induction time under high CO(2) regimes than did plants of cv. Peace. These showed that, throughout the whole induction process, genotype cv. I-55 had a much smaller reduction of leaf carbon gain under the two high CO(2) regimes than under the ambient CO(2) regime, while the high CO(2) effect was smaller in genotype cv. Peace. The results suggest that a high CO(2) environment can reduce both biochemical and stomatal limitations of leaf carbon gain during the photosynthetic induction process, and that a rapid stomatal response can further enhance the high CO(2) effect.


Subject(s)
Carbon Dioxide/pharmacology , Photosynthesis/physiology , Populus/drug effects , Populus/physiology , Carbon/metabolism , Light , Photosynthesis/drug effects , Plant Leaves/physiology , Plant Stomata/physiology , Populus/genetics , Species Specificity , Time Factors
6.
J Plant Res ; 121(1): 43-53, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18060350

ABSTRACT

Leaf physiological and gas-exchange traits of a summer-green herbaceous perennial, Parasenecio yatabei, growing along a stream were examined in relation to leaf age. In its vegetative phase, the aerial part of this plant consists of only one leaf and provides an ideal system for the study of leaf longevity. Volumetric soil water content (SWC) decreased with increasing distance from the stream, whereas relative light intensity was nearly constant. The light-saturated net CO2 assimilation rate (Asat) and leaf stomatal conductance (gs) were approximately 1.5-fold and 1.4-fold higher, respectively, in the lower slope near the mountain stream than in the upper slope far from the mountain stream. The lifespan of aerial parts of vegetative plants significantly increased with decreasing SWC. The leaf mass-based nitrogen content of the leaves (N mass) was almost constant (ca. 2.2%); however, the maximum carboxylation rate by ribulose-1,5-biphosphate carboxylase/oxygenase (rubisco) (V cmax) and photosynthetic nitrogen use efficiency (PNUE, A sat/N area) decreased more slowly in the upper slope than in the lower slope. The higher leaf photosynthetic activity of P. yatabei plants growing lower on the slope leads to a decrease in V (cmax) and PNUE in the early growing season, and to a shorter leaf lifespan.


Subject(s)
Asteraceae/physiology , Ecosystem , Plant Leaves/physiology , Soil/analysis , Trees , Water/chemistry , Climate , Japan , Plant Transpiration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...