Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 24(22): 5771-5780, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27687967

ABSTRACT

The action of the aspartyl protease renin is the rate-limiting initial step of the renin-angiotensin-aldosterone system. Therefore, renin is a particularly promising target for blood pressure as well as onset and progression of cardiovascular and renal diseases. New pyrimidine derivatives 5-14 were designed in an attempt to enhance the renin inhibitory activity of compound 3 identified by our previous fragment-based drug design approach. Introduction of a basic amine essential for interaction with the two aspartic acids in the catalytic site and optimization of the S1/S3 binding elements including an induced-fit structural change of Leu114 ('Leu-in' to 'Leu-out') by a rational structure-based drug design approach led to the discovery of N-(piperidin-3-yl)pyrimidine-5-carboxamide 14, a 65,000-fold more potent renin inhibitor than compound 3. Surprisingly, this remarkable enhancement in the inhibitory activity of compound 14 has been achieved by the overall addition of only seven heavy atoms to compound 3. Compound 14 demonstrated excellent selectivity over other aspartyl proteases and moderate oral bioavailability in rats.


Subject(s)
Drug Design , Piperidines/pharmacology , Protease Inhibitors/pharmacology , Pyrimidines/pharmacology , Renin/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Rats, Sprague-Dawley , Renin/blood , Structure-Activity Relationship
2.
Bioorg Med Chem ; 24(22): 6066-6074, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27720325

ABSTRACT

A novel approach was conducted for fragment-based lead discovery and applied to renin inhibitors. The biochemical screening of a fragment library against renin provided the hit fragment which showed a characteristic interaction pattern with the target protein. The hit fragment bound only to the S1, S3, and S3SP (S3 subpocket) sites without any interactions with the catalytic aspartate residues (Asp32 and Asp215 (pepsin numbering)). Prior to making chemical modifications to the hit fragment, we first identified its essential binding sites by utilizing the hit fragment's substructures. Second, we created a new and smaller scaffold, which better occupied the identified essential S3 and S3SP sites, by utilizing library synthesis with high-throughput chemistry. We then revisited the S1 site and efficiently explored a good building block attaching to the scaffold with library synthesis. In the library syntheses, the binding modes of each pivotal compound were determined and confirmed by X-ray crystallography and the library was strategically designed by structure-based computational approach not only to obtain a more active compound but also to obtain informative Structure Activity Relationship (SAR). As a result, we obtained a lead compound offering synthetic accessibility as well as the improved in vitro ADMET profiles. The fragments and compounds possessing a characteristic interaction pattern provided new structural insights into renin's active site and the potential to create a new generation of renin inhibitors. In addition, we demonstrated our FBDD strategy integrating highly sensitive biochemical assay, X-ray crystallography, and high-throughput synthesis and in silico library design aimed at fragment morphing at the initial stage was effective to elucidate a pocket profile and a promising lead compound.


Subject(s)
Drug Discovery , Protease Inhibitors/pharmacology , Renin/antagonists & inhibitors , Animals , CHO Cells , Cell Survival/drug effects , Cricetulus , Crystallography, X-Ray , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Renin/metabolism , Structure-Activity Relationship
3.
J Chem Inf Model ; 49(6): 1377-88, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19435329

ABSTRACT

Conformation generation is a common and key process of computer-aided drug design. The reliability of the docking simulations, pharmacophore development, and 3D-QSAR analyses depends on the accuracy of conformations of small molecules used as input information for each program. Many conformation generators have been developed with the aim of efficiently generating all the putative bound conformations that small molecules adopt when they interact with macromolecules. Conformation generators have been evaluated by whether they can reproduce the experimentally determined bioactive conformations of bound small molecules. These bioactive conformations are usually obtained from publicly available crystal structures of protein-ligand complexes. However, it is difficult to obtain 2 or more than 2 bioactive conformations of one compound because multiple complex structures of a single molecule with various macromolecules are rarely available. Present methods, therefore, simply check whether a set of generated conformations includes the corresponding bioactive conformation. The overall validity of the entire set of generated conformations against bioactive conformation space has never been checked. In this work we developed a novel method for the evaluation of conformation generators, which makes it possible to measure the performance of a conformation generator based on its ability to reproduce the overall bioactive conformation space. We also determined the optimum parameter sets for OMEGA (OpenEye) based on the coverage of bioactive conformation space and computational efficiency. Our evaluation method elucidated that increasing the number of generated conformations is not necessary to obtain better reproducibility of the overall bioactive conformation space. Our method can be applied to the evaluation of the algorithm and/or design of the conformation generator program itself.


Subject(s)
Computer-Aided Design , Molecular Conformation , Computer Simulation , Models, Molecular , Reproducibility of Results , Software
4.
Bioorg Med Chem Lett ; 18(9): 2990-5, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18400495

ABSTRACT

Non-nucleoside inhibitors of HCV NS5b RNA polymerase were discovered by a fragment-based lead discovery approach, beginning with crystallographic fragment screening. The NS5b binding affinity and biochemical activity of fragment hits and inhibitors was determined by surface plasmon resonance (Biacore) and an enzyme inhibition assay, respectively. Crystallographic fragment screening hits with approximately 1-10mM binding affinity (K(D)) were iteratively optimized to give leads with approximately 200nM biochemical activity and low microM cellular activity in a Replicon assay.


Subject(s)
Antiviral Agents/therapeutic use , DNA-Directed RNA Polymerases/antagonists & inhibitors , Hepacivirus/chemistry , Hepatitis C/enzymology , Viral Nonstructural Proteins/pharmacology , Antiviral Agents/chemical synthesis , Binding Sites , Crystallography, X-Ray , Enzyme Activation , Structure-Activity Relationship , Surface Plasmon Resonance , Viral Nonstructural Proteins/chemistry , Virus Replication/physiology
5.
J Med Chem ; 47(5): 1075-8, 2004 Feb 26.
Article in English | MEDLINE | ID: mdl-14971886

ABSTRACT

The discovery of small and potent peptide antagonists of the corticotropin-releasing factor (CRF) receptor is described. Through the structure-activity relationship studies of 12-amino acid peptide corresponding to the C-terminal residues of astressin, we assumed that a particular surface of the alpha-helix was important for binding to the receptor. The small peptide containing d-Ala31 and cyclohexylalanine38 on that surface was as potent as astressin in binding to the CRF receptor and showed significant ACTH suppression when administered to rats.


Subject(s)
Corticotropin-Releasing Hormone/antagonists & inhibitors , Oligopeptides/chemical synthesis , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Adrenocorticotropic Hormone/antagonists & inhibitors , Adrenocorticotropic Hormone/metabolism , Animals , Oligopeptides/chemistry , Oligopeptides/pharmacology , Protein Structure, Secondary , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...