Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Periodontal Res ; 58(4): 813-826, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37221815

ABSTRACT

BACKGROUND/AIMS: Hyperglycemia in diabetes is closely associated with periodontal disease progression. This study aimed to investigate the effect of hyperglycemia on the barrier function of gingival epithelial cells as a cause of hyperglycemia-exacerbated periodontitis in diabetes mellitus. METHODS: The abnormal expression of adhesion molecules in gingival epithelium in diabetes was compared between db/db and control mice. To study the effects of hyperglycemia on interepithelial cell permeability, the mRNA and protein expressions of adhesion molecules were investigated using a human gingival epithelial cell line (epi 4 cells) in the presence of either 5.5 mM glucose (NG) or 30 mM glucose (HG). Immunocytochemical and histological analyses were performed. We also studied HG-related intracellular signaling to assess abnormal adhesion molecule expression in the cultured epi 4 cells. RESULTS: The results of the proteomic analysis implied the abnormal regulation of cell-cell adhesion, and mRNA and protein expression assessments revealed the significant downregulation of Claudin1 expression in the gingival tissues of db/db mice (p < .05 vs control). Similarly, the mRNA and protein expressions of adhesion molecules were lower in epi 4 cells cultured under HG conditions than in those cultured under NG conditions (p < .05). Three-dimensional culture and transmission electron microscopy revealed reduced thickness of the epithelial cell layers with no flattened apical cells and heterogeneously arranged intercellular spaces among adjacent epi 4 cells under the HG. These results were consistent with the increased permeability of epi 4 cells under the HG relative to that of cells under the NG. This abnormal expression of intercellular adhesion molecules under the HG was related to the increased expression of receptors for advanced glycation end products (AGEs) and oxidative stress relative to that seen under the NG, along with stimulation of ERK1/2 phosphorylation in epi 4 cells. CONCLUSIONS: High glucose-induced impairment of intercellular adhesion molecule expression in gingival epithelial cells was related to the intercellular permeability of gingival cells, representing a possible link to hyperglycemia-related AGE signaling, oxidative stress, and ERK1/2 activation.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Humans , Mice , Animals , Proteomics , Hyperglycemia/complications , Hyperglycemia/metabolism , Epithelium/metabolism , Cell Adhesion Molecules , Chronic Disease , Gingiva/metabolism , Glucose/pharmacology , RNA, Messenger/metabolism , Intercellular Adhesion Molecule-1/metabolism
3.
Sci Rep ; 11(1): 18398, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526589

ABSTRACT

Periodontal infection induces systemic inflammation; therefore, aggravating diabetes. Orally administered periodontal pathogens may directly alter the gut microbiota. We orally treated obese db/db diabetes mice using Porphyromonas gingivalis (Pg). We screened for Pg-specific peptides in the intestinal fecal specimens and examined whether Pg localization influenced the intestinal microbiota profile, in turn altering the levels of the gut metabolites. We evaluated whether the deterioration in fasting hyperglycemia was related to the changes in the intrahepatic glucose metabolism, using proteome and metabolome analyses. Oral Pg treatment aggravated both fasting and postprandial hyperglycemia (P < 0.05), with a significant (P < 0.01) increase in dental alveolar bone resorption. Pg-specific peptides were identified in fecal specimens following oral Pg treatment. The intestinal Pg profoundly altered the gut microbiome profiles at the phylum, family, and genus levels; Prevotella exhibited the largest increase in abundance. In addition, Pg-treatment significantly altered intestinal metabolite levels. Fasting hyperglycemia was associated with the increase in the levels of gluconeogenesis-related enzymes and metabolites without changes in the expression of proinflammatory cytokines and insulin resistance. Oral Pg administration induced gut microbiota changes, leading to entero-hepatic metabolic derangements, thus aggravating hyperglycemia in an obese type 2 diabetes mouse model.


Subject(s)
Diabetes Mellitus, Type 2/complications , Dysbiosis/complications , Dysbiosis/microbiology , Gastrointestinal Microbiome , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Porphyromonas gingivalis/physiology , Animals , Biological Therapy , Biomarkers , Blood Glucose , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Energy Metabolism , Fasting , Insulin/blood , Mice , Peptides/metabolism , Peptides/pharmacology , Periodontitis/complications , Periodontitis/metabolism , Periodontitis/microbiology , Periodontitis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...