Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 5(1): 1700405, 2018 01.
Article in English | MEDLINE | ID: mdl-29375969

ABSTRACT

Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self-organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self-organized sub-nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub-nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability.

2.
Bioorg Med Chem Lett ; 22(15): 4951-4, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22749826

ABSTRACT

The synthesis and structure-activity relationships of ureas as CCR3 antagonists are described. Optimization starting with lead compound 2 (IC(50)=190 nM) derived from initial screening hit compound 1 (IC(50)=600 nM) led to the identification of (S)-N-((1R,3S,5S)-8-((6-fluoronaphthalen-2-yl)methyl)-8-azabicyclo[3.2.1]octan-3-yl)-N-(2-nitrophenyl)pyrrolidine-1,2-dicarboxamide 27 (IC(50)=4.9 nM) as a potent CCR3 antagonist.


Subject(s)
Receptors, CCR3/antagonists & inhibitors , Urea/analogs & derivatives , Drug Evaluation, Preclinical , Humans , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Naphthalenes/metabolism , Proline/chemistry , Protein Binding , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/metabolism , Receptors, CCR3/metabolism , Structure-Activity Relationship , Urea/chemical synthesis , Urea/metabolism
3.
Adv Mater ; 24(17): 2238-41, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22508545

ABSTRACT

A membrane with ordered 3D ionic nanochannels constructed by in situ photopolymerization of a thermotropic liquid-crystalline monomer shows high filtration performance and ion selectivity. The nanostructured membrane exhibits water-treatment performance superior to that of an amorphous membrane prepared from the isotropic melt of the monomer. Self-organized nanostructured membranes have great potential for supplying high-quality water.


Subject(s)
Ions/chemistry , Liquid Crystals/chemistry , Membranes, Artificial , Nanostructures/chemistry , Filtration , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...