Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Artif Organs ; 25(9): 724-7, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11722350

ABSTRACT

We tried to verify the hypothesis that increases in pump flow during diastole are matched by decreases in left ventricular (LV) output during systole. A calf (80 kg) was implanted with an implantable centrifugal blood pump (EVAHEART, SunMedical Technology Research Corp., Nagano, Japan) with left ventricle to aorta (LV-Ao) bypass, and parameters were recorded at different pump speeds under general anesthesia. Pump inflow and outflow pressure, arterial pressure, systemic and pulmonary blood flow, and electrocardiogram (ECG) were recorded on the computer every 5 ms. All parameters were separated into systolic and diastolic components and analyzed. The pulmonary flow was the same as the systemic flow during the study (p > 0.1). Systemic flow consisted of pump flow and LV output through the aortic valve. The ratio of systolic pump flow to pulmonary flow (51.3%) did not change significantly at variable pump speeds (p > 0.1). The other portions of the systemic flow were shared by the left ventricular output and the pump flow during diastole. When pump flow increased during diastole, there was a corresponding decrease in the LV output (Y = -1.068X + 51.462; R(insert)(2) = 0.9501). These show that pump diastolic flow may regulate expansion of the left ventricle in diastole.


Subject(s)
Diastole/physiology , Heart-Assist Devices , Analysis of Variance , Animals , Blood Flow Velocity/physiology , Cattle , Centrifugation , Hemodynamics/physiology , Hemorheology , Ventricular Function, Left/physiology
3.
ASAIO J ; 46(5): 596-9, 2000.
Article in English | MEDLINE | ID: mdl-11016515

ABSTRACT

The purpose of this study was to evaluate the real time relationship between pump flow and pump differential pressure (D-P) during experimentally induced hypertension (HT). Two calves (80 and 68 kg) were implanted with the EVA-HEART centrifugal blood pump (SunMedical Technology Research Corp., Nagano, Japan) under general anesthesia. Blood pressure (BP) in diastole was increased to 100 mm Hg by norepinephrine to simulate HT. Pump flow, D-P, ECG, and BP were measured at pump speeds of 1,800, 2,100, and 2,300 rpm. All data were separated into systole and diastole, and pump flow during HT was compared with normotensive (NT) conditions at respective pump speeds. Diastolic BP was increased to 99.3+/-4.1 mm Hg from 66.5+/-4.4 mm Hg (p<0.01). D-P in systole was under 40 mm Hg (range of change was 10 to 40 mm Hg) even during HT. During NT, the average systolic pump flow volume was 60% of the total pump flow. However, during HT, the average systolic pump flow was 100% of total pump flow volume, although the pump flow volume in systole during HT decreased (33.1+/-5.7 vs. 25.9+/-4.0 ml/systole, p<0.01). In diastole, the average flow volume through the pump was 19.6+/-6.9 ml/diastole during NT and -2.2+/-11.1 ml/diastole during HT (p<0.01). The change in pump flow volume due to HT, in diastole, was greater than the change in pump flow in systole at each pump speed (p<0.001). This study suggests that the decrease of mean pump flow during HT is mainly due to the decrease of the diastolic pump flow and, to a much lesser degree, systolic pump flow.


Subject(s)
Blood Pressure , Heart-Assist Devices , Hypertension/physiopathology , Animals , Cattle , Ventricular Function, Left
4.
Artif Organs ; 24(8): 606-10, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10971245

ABSTRACT

This study showed the usefulness of maintaining positive pump flow to avoid endocardial suction and as an assist bypass. Three calves were implanted with centrifugal pumps. Hemodynamics and pump parameters were measured at varying pump speeds (from 1,100 to 2,300 rpm). In each test pump, speed was adjusted to create 3 hemodynamic states: both positive and negative flow (PNF), positive and zero flow (PZF), and continuously positive flow (CPF). The pump flow volume was determined during systole (Vs) and diastole (Vd). Vs in PNF was 29.6 ml and was not significantly different from Vs in PZF (p > 0.15). Vd in PNF was significantly different from Vd in PZF (p < 0.05). All bypass rates of PNF were over 30% of pulmonary flow. All PZF bypass rates were between the PNF rate and the CPF rate. These data showed that PZF satisfied the minimum requirement of assist flow and was under 100% bypass. Thus, PZF may avoid endocardial suction.


Subject(s)
Heart-Assist Devices , Analysis of Variance , Animals , Cattle , Centrifugation , Hemodynamics , Hemorheology , Myocardial Contraction
5.
Artif Organs ; 23(8): 708-11, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10463493

ABSTRACT

A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.


Subject(s)
Heart-Assist Devices , Animals , Cattle , Equipment Design , Heart-Assist Devices/adverse effects , Hemolysis , Miniaturization
6.
Artif Organs ; 23(8): 797-801, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10463510

ABSTRACT

Many types of rotary blood pumps and pump control methods have recently been developed with the goal of clinical use. From experiments, we know that pump flow spontaneously increases during exercise without changing pump control parameters. The purpose of this study was to determine the hemodynamics associated with the long-term observation of calves implanted with centrifugal blood pumps (EVAHEART, Sun Medical Technology Research Corporation, Nagano, Japan). Two healthy female Jersey calves were implanted with devices in the left thoracic cavity. A total of 22 treadmill exercise tests were performed after the 50th postoperative day. During exercise, the following parameters were compared with conditions at rest: heart rate, blood pressure, central venous oxygen saturation (SvO2), pump speed, and pump flow. The pump flow in a cardiac cycle was analyzed by separating the systole and diastole. Compared to the base data, statistically significant differences were found in the following interrelated parameters: the heart rate (66.8 +/- 5.2 vs. 106 +/- 9.7 bpm), mean pump flow (4.8 +/- 0.2 vs. 7.0 +/- 0.3 L/min), and volume of pump flow in diastole (26.0 +/- 1.8 vs. 13.5 +/- 2.5 ml). During exercise, the volume of pump flow in systole was 3 times larger than that measured in diastole. Blood pressure, SvO2, and pump speed did not change significantly from rest to exercise. These results suggested that the mean pump flow depends on the systolic pump flow. Therefore, the increase in the mean pump flow during exercise under constant pump speed was caused by an increase in the heart rate.


Subject(s)
Heart-Assist Devices , Hemodynamics , Physical Exertion , Animals , Blood Pressure , Cattle , Female , Heart Rate , Myocardial Contraction , Oxygen/blood
7.
FEMS Microbiol Lett ; 175(2): 211-6, 1999 Jun 15.
Article in English | MEDLINE | ID: mdl-10386370

ABSTRACT

We have reported that the macrophage-like cell line J774.1, when infected with the periodontopathic bacterium Actinobacillus actinomycetemcomitans, undergoes apoptosis. In this study, we examined whether stimulation of J774.1 cells with lipopolysaccharide (LPS) before the infection affects the subsequent apoptosis. Cytotoxicity on the LPS-stimulated cells was about half of the unstimulated control cells. DNA fragmentation in the LPS-stimulated cells was also significantly lower than in the control cells, whereas it was increased to a level similar to that of the control cells by addition of a nitric oxide (NO) inhibitor. In addition, significantly smaller numbers of live A. actinomycetemcomitans were recovered from the LPS-stimulated macrophages at 8 h after the infection as compared with the control cells. These findings suggest that the inhibitory effect of LPS on apoptosis results from an enhanced NO-mediated bactericidal activity.


Subject(s)
Aggregatibacter actinomycetemcomitans/immunology , Apoptosis/drug effects , Lipopolysaccharides/pharmacology , Macrophages/microbiology , Aggregatibacter actinomycetemcomitans/physiology , Animals , Apoptosis/physiology , Cell Line , DNA Fragmentation , Macrophage Activation , Macrophages/immunology , Macrophages/physiology , Mice , Nitric Oxide/metabolism , Phagocytosis
9.
Artif Organs ; 22(6): 466-74, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9650667

ABSTRACT

A compact centrifugal blood pump has been developed as an implantable left ventricular assist system. The impeller diameter is 40 mm, and pump dimensions are 55 x 64 mm. This first prototype, fabricated from titanium alloy, resulted in a pump weight of 400 g including a brushless DC motor. The weight of a second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon (DLC) to improve blood compatibility. Flow rates of over 7 L/min against 100 mm Hg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system (Cool-Seal) is used for the shaft seal. In this seal system, the seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. Purge fluid is continuously purified and sterilized by an ultrafiltration unit which is incorporated in the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular (LV) apex descending aorta bypass was performed utilizing an expanded polytetrafluoroethylene (ePTFE) vascular graft with the pump placed in the left thoracic cavity. In 2 in vivo experiments, the pump flow rate was maintained at 5-9 L/min, and pump power consumption remained stable at 9-10 W. All plasma free Hb levels were measured at less than 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (<0.5 ml/day). In both calves, the pumps demonstrated trouble free continuous function over 6 month (200 days and 222 days).


Subject(s)
Heart-Assist Devices , Prosthesis Design , Alloys , Animals , Biocompatible Materials/chemistry , Blood , Blood Pressure , Blood Proteins/chemistry , Blood Vessel Prosthesis , Carbon/chemistry , Cattle , Diamond/chemistry , Electric Power Supplies , Electricity , Follow-Up Studies , Hemoglobins/analysis , Hemolysis , Hemorheology , Hot Temperature , Polytetrafluoroethylene , Protein Denaturation , Surface Properties , Titanium , Ultrafiltration/instrumentation
10.
ASAIO J ; 43(5): M567-71, 1997.
Article in English | MEDLINE | ID: mdl-9360108

ABSTRACT

A critical issue facing the development of an implantable, rotary blood pump is the maintenance of an effective seal at the rotating shaft. Mechanical seals are the most versatile type of seal in wide industrial applications. However, in a rotary blood pump, typical seal life is much shorter than required for chronic support. Seal failure is related to adhesion and aggregation of heat denatured blood proteins that diffuse into the lubricating film between seal faces. Among the blood proteins, fibrinogen plays an important role due to its strong propensity for adhesion and low transition temperature (approximately 50 degrees C). Once exposed to temperature exceeding 50 degrees C, fibrinogen molecules fuse together by multi-attachment between heat denatured D-domains. This quasi-polymerized fibrin increases the frictional heat, which proliferates the process into seal failure. If the temperature of the seal faces is maintained well below 50 degrees C, a mechanical seal would not fail in blood. Based on this "Cool-Seal" concept, we developed a miniature mechanical seal made of highly thermally conductive material (SiC), combined with a recirculating purge system. A large supply of purge fluid is recirculated behind the seal face to augment convective heat transfer to maintain the seal temperature below 40 degrees C. It also cools all heat generating pump parts (motor coil, bearing, seal). The purge consumption has been optimized to virtually nil (< 0.5 cc/day). An ultrafiltration unit integrated in the recirculating purge system continuously purifies and sterilizes the purge fluid for more than 5 months without filter change. The seal system has now been incorporated into our intraventricular axial flow blood pump (IVAP) and newly designed centrifugal pump. Ongoing in vivo evaluation of these systems has demonstrated good seal integrity for more than 160 days. The Cool-Seal system can be applied to any type of rotary blood pump (axial, diagonal, centrifugal, etc.) and offers a practical solution to the shaft seal problem and heat related complications, which currently limit the use of implantable rotary blood pumps.


Subject(s)
Blood , Heart-Assist Devices , Animals , Biomedical Engineering , Cattle , Evaluation Studies as Topic , Hot Temperature , Humans , Prosthesis Design , Time Factors
11.
ASAIO J ; 43(5): M696-700, 1997.
Article in English | MEDLINE | ID: mdl-9360136

ABSTRACT

A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.


Subject(s)
Heart-Assist Devices , Animals , Cattle , Evaluation Studies as Topic , Heart-Assist Devices/adverse effects , Hemodynamics , Humans , Infarction/etiology , Kidney/blood supply , Physical Exertion , Prosthesis Design , Time Factors
12.
ASAIO J ; 43(5): M686-91, 1997.
Article in English | MEDLINE | ID: mdl-9360134

ABSTRACT

A compact centrifugal blood pump was developed as an implantable left ventricular assist system. The impeller diameter is 40 mm and the pump dimensions are 55 x 64 mm. This first prototype was fabricated from titanium alloy, resulting in a pump weight of 400 g including a brushless DC motor. Weight of the second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon to improve blood compatibility. Flow rates of over 7 L/min against 100 mmHg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system ("Cool-Seal") is used as a shaft seal. In this seal system, seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. The purge fluid is continuously purified and sterilized by an ultrafiltration filter incorporated into the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular apex-descending aorta bypass was performed utilizing a PTFE (Polytetrafluoroethylene) vascular graft, with the pump placed in the left thoracic cavity. In two in vivo experiments, pump flow rate was maintained at 5-8 L/min, and pump power consumption remained stable at 9-10 W. All plasma free hemoglobin levels were measured at < 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (< 0.5 ml/ day). Both animals remain under observation after 162 and 91 days of continuous pump function.


Subject(s)
Blood , Heart-Assist Devices , Animals , Biomedical Engineering , Blood Flow Velocity , Cattle , Evaluation Studies as Topic , Heart-Assist Devices/adverse effects , Hemolysis , Hot Temperature , Humans , In Vitro Techniques , Prosthesis Design , Time Factors
13.
Am J Physiol ; 266(1 Pt 2): H1-10, 1994 Jan.
Article in English | MEDLINE | ID: mdl-8304490

ABSTRACT

Although the mechanical properties of blood vessels have been studied extensively, the shear modulus of the blood vessel wall is still unknown. New data on the shear modulus of elasticity of rat arteries and its variation with axial stretch and blood pressure are presented. The data were obtained from a new instrument designed and constructed by us to perform simultaneous torsion, inflation, and longitudinal stretching tests. It was found under physiological conditions (pressure = 120 mmHg or 16 kPa; longitudinal stretch = 1.2 relative to zero-stress state), the shear modulus of normal rat thoracic aorta is G = 137 +/- 18 kPa. The difference of shear modulus at body temperature (37 degrees C) and room temperature (25 degrees C) is within 10%. The shear modulus varies significantly with changing longitudinal and circumferential strains in proportion to the strain energy due to these strains. A constitutive equation based on a pseudo strain energy function is proposed. The vessel wall is not transversely isotropic in the incremental sense. When the rat was subjected to high blood pressure due to constriction of its aorta, the shear modulus does not vary significantly with the length of time the animal was subjected to hypertension.


Subject(s)
Arteries/physiology , Animals , Aorta, Thoracic/physiology , Arteries/physiopathology , Elasticity , Hypertension/physiopathology , Models, Cardiovascular , Rats , Rats, Sprague-Dawley , Stress, Mechanical , Temperature , Vasodilation
15.
Kangogaku Zasshi ; 32(4): 32-6, 1968 Apr.
Article in Japanese | MEDLINE | ID: mdl-4969040
SELECTION OF CITATIONS
SEARCH DETAIL
...