Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Breed Sci ; 71(3): 390-395, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34776746

ABSTRACT

Dietary fiber has high functional value in relation to gut flora. We searched for a high-lysine mutant of the most popular rice cultivar in Japan, 'Koshihikari', as a route to a higher dietary fiber content like a success case in new barley cultivar, 'Beau-fiber'. We found several promising high-lysine mutants with high dietary fiber content. One of these, 'WFE5', has three times the dietary fiber content in white rice. Two rounds of backcrossing to Koshihikari produced a near-isogenic line with a high fiber content. The line's agronomic traits were close to those of Koshihikari except for yield and eating quality. As these two traits are critical, we discuss how to improve them.

2.
Plant Physiol ; 170(3): 1445-59, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26792122

ABSTRACT

Starch is a biologically and commercially important polymer of glucose. Starch is organized into starch grains (SGs) inside amyloplasts. The SG size differs depending on the plant species and is one of the most important factors for industrial applications of starch. There is limited information on genetic factors regulating SG sizes. In this study, we report the rice (Oryza sativa) mutant substandard starch grain6 (ssg6), which develops enlarged SGs in endosperm. Enlarged SGs are observed starting at 3 d after flowering. During endosperm development, a number of smaller SGs appear and coexist with enlarged SGs in the same cells. The ssg6 mutation also affects SG morphologies in pollen. The SSG6 gene was identified by map-based cloning and microarray analysis. SSG6 encodes a protein homologous to aminotransferase. SSG6 differs from other rice homologs in that it has a transmembrane domain. SSG6-green fluorescent protein is localized in the amyloplast membrane surrounding SGs in rice endosperm, pollen, and pericarp. The results of this study suggest that SSG6 is a novel protein that controls SG size. SSG6 will be a useful molecular tool for future starch breeding and applications.


Subject(s)
Endosperm/metabolism , Membrane Proteins/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Plastids/metabolism , Starch/metabolism , Transaminases/metabolism , Amino Acid Sequence , Base Sequence , Cytoplasmic Granules/genetics , Cytoplasmic Granules/metabolism , Endosperm/genetics , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunoblotting , Intracellular Membranes/metabolism , Membrane Proteins/genetics , Microscopy, Confocal , Microscopy, Electron, Transmission , Mutation , Oligonucleotide Array Sequence Analysis , Oryza/genetics , Plant Proteins/genetics , Plastids/genetics , Plastids/ultrastructure , Pollen/genetics , Pollen/metabolism , Sequence Homology, Amino Acid , Transaminases/genetics
3.
Breed Sci ; 65(5): 381-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26719740

ABSTRACT

We developed and evaluated the effectiveness of a new method to detect differences among rice cultivars in their resistance to kernel cracking. The method induces kernel cracking under laboratory controlled condition by moisture absorption to brown rice. The optimal moisture absorption conditions were determined using two japonica cultivars, 'Nipponbare' as a cracking-resistant cultivar and 'Yamahikari' as a cracking-susceptible cultivar: 12% initial moisture content of the brown rice, a temperature of 25°C, a duration of 5 h, and only a single absorption treatment. We then evaluated the effectiveness of these conditions using 12 japonica cultivars. The proportion of cracked kernels was significantly correlated with the mean 10-day maximum temperature after heading. In addition, the correlation between the proportions of cracked kernels in the 2 years of the study was higher than that for values obtained using the traditional late harvest method. The new moisture absorption method could stably evaluate the resistance to kernel cracking, and will help breeders to develop future cultivars with less cracking of the kernels.

4.
Breed Sci ; 63(3): 339-46, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24273430

ABSTRACT

Decline in the apparent quality of rice (Oryza sativa L.) grain due to high temperatures during ripening recently became a major concern in many areas in Japan. The occurrence of white-back kernels (WBK) is one of the main problems of heat-induced quality decline. We identified QTLs associated with the occurrence of WBK using recombinant inbred lines (RILs) and verified their effects using near-isogenic lines (NILs). The QTL analysis used F7 and F8 RILs derived from 'Hana-echizen' (HE), which is tolerant to high temperature, × 'Niigata-wase' (NW), which is sensitive to high temperature. Four QTLs were identified on chromosomes 3, 4, 6, and 9 (qWB3, qWB4, qWB6 and qWB9). To verify the effects of qWB6 and qWB9, we developed two NILs in which qWB6 or both were introduced from HE into the NW background. The HE allele at qWB6 significantly decreased WBK under multiple environments. The combination of qWB6 and qWB9 in an F2 population derived from a cross between a NIL and NW showed that the NW allele at qWB9 significantly decreased WBK if the qWB6 allele was HE. These results will be of value in marker-assisted selection for the breeding of rice with tolerance to heat-induced quality decline.

SELECTION OF CITATIONS
SEARCH DETAIL
...