Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anesthesiology ; 90(6): 1714-22, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10360871

ABSTRACT

BACKGROUND: Barbiturate anesthetics are optically active and usually exist in two mirror-image enantiomeric forms. Their stereoselective effects in mammals are well known, but remarkably few data are available concerning their effects on anesthetic targets in vitro. This is in part because of the lack of availability of pure barbiturate enantiomers. Such in vitro data could be used to test the relevance of putative molecular targets. METHODS: A high-performance liquid chromatography technique using a permethylated beta-cyclodextrin column was used to separate the optical isomers of three barbiturates in preparative quantities. The effects of the isomers on GABA-induced currents in stably transfected mouse fibroblast cells were investigated using the whole-cell patch-clamp technique. RESULTS: Highly purified optical isomers of hexobarbital, pentobarbital, and thiopental were prepared, and their effects were studied on a gamma-aminobutyric acid type A receptor of defined subunit composition. For each of the three barbiturates, both enantiomers potentiated gamma-aminobutyric acid-induced currents at pharmacologically relevant concentrations, with the S-enantiomer being more potent than the R-enantiomer by a factor of between 1.7 and 3.5. The degree of stereoselectivity did not vary greatly with anesthetic concentration. CONCLUSIONS: The rank order and degree of stereoselectivity that we have observed for the enantiomers of hexobarbital, pentobarbital, and thiopental acting on the gamma-aminobutyric acid type A receptor are entirely consistent with this receptor playing a central role in the anesthetic actions of barbiturates.


Subject(s)
Barbiturates/pharmacology , Receptors, GABA-A/drug effects , Animals , Barbiturates/isolation & purification , Barbiturates/pharmacokinetics , Cells, Cultured , Chromatography, High Pressure Liquid , Mice , Stereoisomerism
2.
Anesthesiology ; 88(3): 708-17, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9523815

ABSTRACT

BACKGROUND: The intravenous anesthetic etomidate is optically active and exists in two mirror-image enantiomeric forms. However, although the R(+) isomer is used as a clinical anesthetic, quantitative information on the relative potencies of the R(+) and S(-) isomers is lacking. These data could be used to test the relevance of putative molecular targets. METHODS: The anesthetic concentrations for a half-maximal effect (EC50) needed to induce a loss of righting reflex in tadpoles (Rana temporaria) were determined for both etomidate enantiomers. The effects of the isomers on gamma-aminobutyric acid (GABA)-induced currents in stably transfected mouse fibroblast cells was also investigated using the patch-clamp technique. In addition, the effects of the isomers on a lipid chain-melting phase transition were determined. RESULTS: The EC50 concentrations for general anesthesia for the R(+) and S(-) isomers were 3.4 +/- 0.1 microM and 57 +/- 1 microM, with slopes of n = 1.9 +/- 0.1 and n = 2.9 +/- 0.2, respectively. The R(+) isomer was also much more effective than the S(-) isomer at potentiating GABA-induced currents, although the degree of stereoselectivity varied with anesthetic concentration. R(+) etomidate potentiated the GABA-induced currents by increasing the apparent affinity of GABA for its receptor. Both isomers were equally effective at disrupting lipid bilayers. CONCLUSIONS: These data are consistent with the idea that the GABA(A) receptor plays a central role in the actions of etomidate. Etomidate exerts its effects on the receptor by binding directly to a specific site or sites on the protein and allosterically enhancing the apparent affinity of GABA for its receptor.


Subject(s)
Etomidate/chemistry , Receptors, GABA-A/drug effects , 1,2-Dipalmitoylphosphatidylcholine/pharmacology , Anesthetics, Intravenous/chemistry , Animals , Cell Line , Dose-Response Relationship, Drug , Etomidate/pharmacology , Ion Channel Gating/drug effects , Lipid Bilayers , Mice , Rana temporaria , Stereoisomerism , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...