Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 67(1-4): 113-32, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14607473

ABSTRACT

A field experiment was conducted at Canadian Forces Base Borden (CFB Borden) to assess the air distribution from a single in situ air sparging injection point. This aquifer consists of fine to medium sand deposited in horizontal layers. The permeability at the study location varied from 10(-10) to 10(-14) m2 and distinct low permeability horizons were present at approximately 1.2, 2.0, and 2.9 m below the water table. Prior to air injection, a 15x15-m portion of the vadose zone was excavated to the water table (approximately 1 m below ground surface) in order to visually observe air release distribution at the water table. The water table was actively maintained 5 cm above the excavated surface. The sparging system operated for a period of 7 days with an injection flow rate of 200 m3/days (5 scfm). The resulting subsurface air distribution was assessed using a variety of techniques including neutron logging, borehole and surface ground penetrating radar, piezometric head measurements, surface visualization, and hydraulic testing. Through this combination of tests, it was demonstrated that variations in permeability and, hence, capillary pressure at the site were sufficient to cause the injected air to spread laterally, forming stratigraphically trapped air pockets beneath the low permeability horizons. The formation of these air pockets eventually resulted in a buildup of capillary pressure that exceeded the air entry pressure and allowed some air to migrate up through the lower permeability layers. Each of the assessment techniques employed generated information at different spatial scales that prevented a direct comparison of the results from the various techniques; however, the results from all techniques proved to be critical in the interpretation of the experimental data. As a consequence, the different assessment techniques should not be viewed as alternatives, but rather as complimentary techniques.


Subject(s)
Soil , Water Supply , Air , Air Movements , Environmental Monitoring , Environmental Pollution/prevention & control , Permeability , Pressure , Volatilization , Water Movements
2.
Mutat Res ; 422(1): 7-14, 1998 Nov 09.
Article in English | MEDLINE | ID: mdl-9920423

ABSTRACT

High skin cancer rates, stratospheric ozone depletion and increased public interest and concern have resulted in a strong demand for solar ultraviolet radiation measurements and information. The Australian Radiation Laboratory (ARL) has been involved since the mid-1980s in the measurement of solar ultraviolet radiation (UVR) using spectroradiometers (SRM) and a network of broadband detectors at 18 sites in Australia and Antarctica and in Singapore through a collaborative agreement with the Singapore Institute of Science and Forensic Medicine. Measurement locations range from equatorial (Singapore, 1.3 degrees N) through tropical (Darwin, 12.4 degrees S) to polar (Mawson, 67.6 degrees S) and as a result there are many difficulties associated with maintenance and calibration of the network detectors, and transfer of data to ensure an accurate and reliable data collection. Calibration procedures for the various detectors involve the comparison with simultaneous spectral measurements using a portable SRM incorporating a double monochromator, calibrated against traceable standard lamps. Laboratory measurements of cosine response and responsivity are also made. Detectors are intercompared at the Yallambie site for a number of months before installation at another location. As an additional check on the calibrations, computer models of solar UVR at the earth's surface for days with clear sky and known ozone are compared with the UV radiometer measurements.


Subject(s)
Radiometry/methods , Sunlight , Ultraviolet Rays , Antarctic Regions , Australia , Calibration , Environmental Monitoring , Singapore , Sunlight/adverse effects , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...