Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(8): e0219829, 2019.
Article in English | MEDLINE | ID: mdl-31393905

ABSTRACT

Type 1 IFNs stimulate secretion of IP-10 (CXCL10) which is a critical chemokine to recruit effector T cells to the tumor microenvironment and IP-10 knockout mice exhibit a phenotype with compromised effector T cell generation and trafficking. Type 1 IFNs also induce MHC class 1 upregulation on tumor cells which can enhance anti-tumor CD8 T cell effector response in the tumor microenvironment. Although type 1 IFNs show great promise in potentiating anti-tumor immune response, systemic delivery of type 1 IFNs is associated with toxicity thereby limiting clinical application. In this study, we fused tumor targeting antibodies with IFN-α and showed that the fusion proteins can be produced with high yields and purity. IFN fusions selectively induced IP-10 secretion from antigen positive tumor cells, which was critical in recruiting the effector T cells to the tumor microenvironment. Further, we found that treatment with the anti-PDL1-IFN- α fusion at concentrations as low as 1 pM exhibited potent activity in mediating OT1 CD8+ T cell killing against OVA expressing tumor cells, while control IFN fusion did not exhibit any activity at the same concentration. Furthermore, the IFN-α fusion antibody was well tolerated in vivo and demonstrated anti-tumor efficacy in an anti-PD-L1 resistant syngeneic mouse tumor model. One of the potential mechanisms for the enhanced CD8 T cell killing by anti-PD-L1 IFN fusion was up-regulation of MHC class I/tumor antigen complex. Our data supports the hypothesis of targeting type 1 IFN to the tumor microenvironment may enhance effector T cell functions for anti-tumor immune response.


Subject(s)
Immunotherapy/methods , Interferon-alpha/pharmacology , Neoplasms/therapy , Animals , Antibodies, Neoplasm/immunology , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Chemokine CXCL10/immunology , Chemokine CXCL10/metabolism , Female , HEK293 Cells , Humans , Interferon-alpha/metabolism , Mice , Mice, Inbred Strains , Programmed Cell Death 1 Receptor/immunology , Tumor Microenvironment/immunology
2.
MAbs ; 9(4): 680-695, 2017.
Article in English | MEDLINE | ID: mdl-28323513

ABSTRACT

TNF-α (TNF), a pro-inflammatory cytokine is synthesized as a 26 kDa protein, anchors in the plasma membrane as transmembrane TNF (TmTNF), and is subjected to proteolysis by the TNF-α converting enzyme (TACE) to release the 15 kDa form of soluble TNF (sTNF). TmTNF and sTNF interact with 2 distinct receptors, TNF-R1 (p55) and TNF-R2 (p75), to mediate the multiple biologic effects of TNF described to date. Several anti-TNF biologics that bind to both forms of TNF and block their interactions with the TNF receptors are now approved for the treatment of a variety of immune-mediated diseases. Several reports suggest that binding of anti-TNFs to TmTNF delivers an outside-to-inside 'reverse' signal that may also contribute to the efficacy of anti-TNFs. Some patients, however, develop anti-TNF drug antibody responses (ADA or immunogenicity). Here, we demonstrate biochemically that TmTNF is transiently expressed on the surface of lipopolysaccharide-stimulated primary human monocytes, macrophages, and monocyte-derived dendritic cells (DCs) and expression of TmTNF on the cell surface is enhanced following treatment of cells with TAPI-2, a TACE inhibitor. Importantly, binding of anti-TNFs to TmTNF on DCs results in rapid internalization of the anti-TNF/TmTNF complex first into early endosomes and then lysosomes. The internalized anti-TNF is processed and anti-TNF peptides can be eluted from the surface of DCs. Finally, tetanus toxin peptides fused to anti-TNFs are presented by DCs to initiate T cell recall proliferation response. Collectively, these observations may provide new insights into understanding the biology of TmTNF, mode of action of anti-TNFs, biology of ADA response to anti-TNFs, and may help with the design of the next generation of anti-TNFs.


Subject(s)
Antibodies , Cell Membrane/metabolism , Dendritic Cells/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Antibodies/metabolism , Antibodies/pharmacology , HEK293 Cells , Humans , Macrophages/metabolism , Mice , Monocytes/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors
3.
J Biol Chem ; 290(8): 4573-4589, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25552479

ABSTRACT

The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.


Subject(s)
Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/chemistry , Janus Kinase 3/metabolism , Protein Kinase Inhibitors , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/pharmacology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/enzymology , Autoimmune Diseases/genetics , Catalytic Domain , Cell Line , Humans , Janus Kinase 3/genetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
4.
BMC Struct Biol ; 12: 22, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-22995073

ABSTRACT

BACKGROUND: Structure-based drug design (SBDD) can accelerate inhibitor lead design and optimization, and efficient methods including protein purification, characterization, crystallization, and high-resolution diffraction are all needed for rapid, iterative structure determination. Janus kinases are important targets that are amenable to structure-based drug design. Here we present the first mouse Tyk2 crystal structures, which are complexed to 3-aminoindazole compounds. RESULTS: A comprehensive construct design effort included N- and C-terminal variations, kinase-inactive mutations, and multiple species orthologs. High-throughput cloning and expression methods were coupled with an abbreviated purification protocol to optimize protein solubility and stability. In total, 50 Tyk2 constructs were generated. Many displayed poor expression, inadequate solubility, or incomplete affinity tag processing. One kinase-inactive murine Tyk2 construct, complexed with an ATP-competitive 3-aminoindazole inhibitor, provided crystals that diffracted to 2.5-2.6 Å resolution. This structure revealed initial "hot-spot" regions for SBDD, and provided a robust platform for ligand soaking experiments. Compared to previously reported human Tyk2 inhibitor crystal structures (Chrencik et al. (2010) J Mol Biol 400:413), our structures revealed a key difference in the glycine-rich loop conformation that is induced by the inhibitor. Ligand binding also conferred resistance to proteolytic degradation by thermolysin. As crystals could not be obtained with the unliganded enzyme, this enhanced stability is likely important for successful crystallization and inhibitor soaking methods. CONCLUSIONS: Practical criteria for construct performance and prioritization, the optimization of purification protocols to enhance protein yields and stability, and use of high-throughput construct exploration enable structure determination methods early in the drug discovery process. Additionally, specific ligands stabilize Tyk2 protein and may thereby enable crystallization.


Subject(s)
Drug Design , Indazoles/chemistry , Indazoles/pharmacology , TYK2 Kinase/antagonists & inhibitors , TYK2 Kinase/chemistry , Amino Acid Sequence , Animals , Crystallization , Crystallography, X-Ray , Enzyme Stability/drug effects , Humans , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism , Mice , Molecular Sequence Data , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Structure, Secondary , Proteolysis/drug effects , Structure-Activity Relationship , TYK2 Kinase/isolation & purification
5.
Bioorg Med Chem Lett ; 20(1): 330-3, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19919896

ABSTRACT

MK2 is a Ser/Thr kinase of significant interest as an anti-inflammatory drug discovery target. Here we describe the development of in vitro tools for the identification and characterization of MK2 inhibitors, including validation of inhibitor interactions with the crystallography construct and determination of the unique binding mode of 2,4-diaminopyrimidine inhibitors in the MK2 active site. Use of these tools in the optimization of a potent and selective inhibitor lead series is described in the accompanying Letter.


Subject(s)
Anti-Inflammatory Agents/chemistry , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemistry , Adenosine Triphosphate/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Binding Sites , Binding, Competitive , Computer Simulation , Intracellular Signaling Peptides and Proteins/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship
6.
BMC Struct Biol ; 9: 16, 2009 Mar 18.
Article in English | MEDLINE | ID: mdl-19296855

ABSTRACT

BACKGROUND: Structure-based drug design (SBDD) can provide valuable guidance to drug discovery programs. Robust construct design and expression, protein purification and characterization, protein crystallization, and high-resolution diffraction are all needed for rapid, iterative inhibitor design. We describe here robust methods to support SBDD on an oral anti-cytokine drug target, human MAPKAP kinase 2 (MK2). Our goal was to obtain useful diffraction data with a large number of chemically diverse lead compounds. Although MK2 structures and structural methods have been reported previously, reproducibility was low and improved methods were needed. RESULTS: Our construct design strategy had four tactics: N- and C-terminal variations; entropy-reducing surface mutations; activation loop deletions; and pseudoactivation mutations. Generic, high-throughput methods for cloning and expression were coupled with automated liquid dispensing for the rapid testing of crystallization conditions with minimal sample requirements. Initial results led to development of a novel, customized robotic crystallization screen that yielded MK2/inhibitor complex crystals under many conditions in seven crystal forms. In all, 44 MK2 constructs were generated, ~500 crystals were tested for diffraction, and ~30 structures were determined, delivering high-impact structural data to support our MK2 drug design effort. CONCLUSION: Key lessons included setting reasonable criteria for construct performance and prioritization, a willingness to design and use customized crystallization screens, and, crucially, initiation of high-throughput construct exploration very early in the drug discovery process.


Subject(s)
Drug Design , Intracellular Signaling Peptides and Proteins/chemistry , Mutagenesis, Site-Directed , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Amino Acid Substitution , Computer Simulation , Crystallization , Crystallography, X-Ray , Humans , Intracellular Signaling Peptides and Proteins/genetics , Isoenzymes/biosynthesis , Isoenzymes/chemistry , Isoenzymes/isolation & purification , Protein Conformation , Protein Serine-Threonine Kinases/biosynthesis , Protein Serine-Threonine Kinases/genetics
7.
J Biomol Screen ; 13(7): 619-25, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18626113

ABSTRACT

Microsomal prostaglandin E2 synthase-1 (mPGES-1) catalyzes the formation of prostaglandin E2 (PGE2) from the endoperoxide prostaglandin H2 (PGH2). Expression of this enzyme is induced during the inflammatory response, and mouse knockout experiments suggest it may be an attractive target for antiarthritic therapies. Assaying the activity of this enzyme in vitro is challenging because of the unstable nature of the PGH2 substrate. Here, the authors present an mPGES-1 activity assay suitable for characterization of enzyme preparations and for determining the potency of inhibitor compounds. This plate-based competition assay uses homogenous time-resolved fluorescence to measure PGE2 produced by the enzyme. The assay is insensitive to DMSO concentration up to 10% and does not require extensive washes after the initial enzyme reaction is concluded, making it a simple and convenient way to assess mPGES-1 inhibition.


Subject(s)
Intramolecular Oxidoreductases/metabolism , Microsomes/metabolism , Spectrometry, Fluorescence/methods , Animals , Arthritis/drug therapy , Baculoviridae/metabolism , Binding, Competitive , Gene Expression Regulation, Enzymologic , Humans , Inflammation , Inhibitory Concentration 50 , Insecta , Microsomes/enzymology , Peroxides/metabolism , Prostaglandin H2/metabolism , Prostaglandin-E Synthases , Time Factors
8.
Arch Biochem Biophys ; 441(1): 64-74, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16087150

ABSTRACT

Cancer osaka thyroid (COT), a human MAP 3 K, is essential for lipopolysaccharide activation of the Erk MAPK cascade in macrophages. COT 30--467 is insoluble, whereas low levels of COT 30--397 can be expressed, but this protein is unstable. However, both COT 30--467 and COT 30--397 are expressed in a soluble and stable form when produced in complex with the C-terminal half of p105. The k(cat) of COT 30--397 is reduced approximately 47--fold in the COT 30--467/p105 Delta N complex. COT prefers Mn(2+) to Mg(2+) as the ATP metal cofactor, exhibiting an unusually high ATP K(m) in the presence of Mg(2+). When using Mn(2+) as the cofactor, the ATP K(m) is reduced to a level typical of most kinases. In contrast, the binding affinity of COT for its other substrate MEK is cofactor independent. Our results using purified proteins indicate that p105 binding improves COT solubility and stability while down-regulating kinase activity, consistent with cellular data showing that p105 functions as an inhibitor of COT.


Subject(s)
MAP Kinase Kinase Kinases/chemistry , MAP Kinase Kinase Kinases/isolation & purification , NF-kappa B/chemistry , Protein Precursors/chemistry , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/isolation & purification , Binding Sites , Enzyme Activation , Enzyme Stability , Humans , Jurkat Cells , Kinetics , MAP Kinase Kinase Kinases/genetics , NF-kappa B p50 Subunit , Protein Binding , Protein Engineering/methods , Proto-Oncogene Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...