Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 243: 120364, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37473510

ABSTRACT

Eutrophication leads to algae blooms and reduces the transparency of water bodies, which seriously affects water quality and ecosystem equilibrium, especially in shallow water body ecosystems (SWE). Controlling foodwebs by manipulating fish and macrophytes provides a feasible method to mitigate the effects of eutrophication. The response of zooplankton as the primary consumer to biomanipulation is mostly conceptualized and lacks detailed observation. Mesocosm experiments that altered the biomass of planktivorous fish and macrophytes were set up and their boundary conditions were extended into a series of scenarios for modeling biomanipulation. Thus, this study utilizes a one-dimensional lake ecosystem model Water Ecosystems Tool (WET) which considered each zooplankton group: rotifers, cladocerans, and copepods, to predict the seasonal dynamic effects of biomanipulation on zooplankton in SWE, and the model results are analyzed in comparison with the mesocosm results. Observed data from mesocosm experiments set up in a temperate pond, including water temperature, dissolved oxygen (DO), total nitrogen (TN), total phosphorus (TP), chlorophyll a (Chl a), macrophytes, zooplankton, and fish, were used to calibrate and validate the models. The modeled results showed that in spring and summer zooplanktivorous fish removal would increase all three categories of zooplankton and consequently cause a decrease of phytoplankton, whilst an increase in fish biomass would increase phytoplankton, and concomitantly water turbidity. However, in autumn, rotifers and phytoplankton increased in response to fish removal, but cladocerans and copepods decreased, 27% and 41%, respectively. Across all three vegetated seasons, increasing the biomass of macrophytes revealed a similar pattern: all three categories of zooplankton increased and phytoplankton subsequently decreased. Our study proposes a "fish-zooplankton-macrophyte-phytoplankton" trophic cascade and quantitatively predicts the dynamics of each zooplankton group under biomanipulation through this pathway, and provides support for establishing macrophyte beds and removing zooplanktivorous fish (in spring and summer) as an effective approach to mitigate eutrophication.


Subject(s)
Ecosystem , Zooplankton , Animals , Zooplankton/physiology , Seasons , Chlorophyll A , Lakes , Phytoplankton/physiology , Biomass , Eutrophication , Fishes
2.
Food Chem ; 421: 136204, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37094408

ABSTRACT

Seasonal responses of green ormer in terms of antioxidant capacity and lipid peroxidation, proximate and fatty acid tissue composition, trace and macro elements concentrations over the seasons were studied in relation to temperature shifts in the Northern Adriatic Sea. Overall antioxidative defenses (SOD, TBARS, TAS, LDH) varied significantly (p < 0.001) according to seasons (primarily spring and summer). The proportions of overall SFA were highest in summer. The proportions of MUFA increased in autumn, with significant differences between genders in spring and summer, and spring, summer and autumn for C18:1n7 and C20:4n6. The only fatty acid lacking significant variation between seasons was C22:5n3. Significant overall differences were observed in summer vs. winter samples for As, Ba, Co, Ni, Mn, Pb, Sb, and Se content in soft tissues, however, gender variations were not significant. The data obtained in the study are of utmost importance for the management of this under-investigated species.


Subject(s)
Antioxidants , Fatty Acids , Female , Male , Humans , Seasons , Temperature
3.
Sci Rep ; 10(1): 11098, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32606303

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 10(1): 1104, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980692

ABSTRACT

A ten-week feeding trial was carried out to investigate the effects of replacing fishmeal (FM) with soybean meal (SBM) and brewer's yeast (BY) on growth performance, blood parameters, oxidative stress and micromorphology of liver and intestines in brown bullhead (Ameiurus nebulosus L.). Fish were fed nine feeds in which FM was replaced with 25%, 50%, 75% and 100% SBM (K1, K2, K3 and K4) and 17% + 8%, 42% + 8%, 67% + 8% and 92% + 8% of SBM/BY combination (K5, K6, K7, K8). Growth indices showed greater outcomes for the K2 group in comparison to all other groups. A decrease in plasma cholesterol and triglycerides concentrations was found after FM replacement. Activity of SOD was higher in groups K4, K7 and K8. The early inflammatory indications with abnormal vacuolization of lamina propria and basal epithelium were present in diets K4 and K8. Hepatocytes were irregular in shape with signs of inflammatory reaction in diet K8. A decreased perimeter of hepatocyte nuclei was detected in all experimental diets when compared with the control. This study demonstrates that the optimal replacement of FM with SBM/BY in brown bullhead diets contains up to 50% of FM replaced with SBM in order to obtain advantageous growth performance and adequate health condition.


Subject(s)
Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Diet/veterinary , Fisheries , Glycine max , Ictaluridae/growth & development , Saccharomyces cerevisiae , Animals , Cholesterol/blood , Fish Products , Hepatocytes/pathology , Ictaluridae/anatomy & histology , Ictaluridae/blood , Intestines/anatomy & histology , Intestines/pathology , Liver/anatomy & histology , Liver/pathology , Oxidative Stress , Glycine max/adverse effects , Superoxide Dismutase/blood , Triglycerides/blood
5.
Sci Total Environ ; 651(Pt 1): 143-153, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30227284

ABSTRACT

At the beginning of the 20th century, the middle section of the Sava River in Croatia was unaffected by major human activities and rich in ichthyofauna. The Sava River was important for commercial and recreational fishing for the local population, which still remains today. However, the 1920s mining industry was established in Slovenia, which emitted carbon dust into the Sava River. At the same time, the construction of embankments to mitigate flooding started in the middle section. Furthermore, in the 1980s, the Krsko nuclear power plant (NPP), and in the 2010s, the Krsko hydropower plant (HPP) were built in Slovenia. These activities could have an impact on the composition of fish communities downstream from the major sources of disturbances. Therefore, the main aim of this paper were to analyze the changes in fish assemblages of the Sava River from 1978 to 2017, prior to and after the construction of Krsko NPP and HPP at the Medsave site on the Sava River, 20 km downstream from the major construction operations. Collected data were divided into four sampling periods (SP): SP1, from 1978 to 1980; SP2, from 1991 to 1994; SP3, from 2001 to 2006, and SP4 from 2011 to 2017. Besides alien fish species, water quality and hydromorphological modifications were identified as significant stressors. In SP1 and SP2 limnophilic and eurytopic fish groups were predominant, and 26 different fish species were identified, but in SP3 and SP4 rheophilic fish groups become dominant, and the diversity has declined to 21 species. Threatened species blageon, Telestes souffia seems to be missing from the main course of the Sava River in last 20 years. It can be concluded that disturbances in the fish assemblage pattern have coincided with the presence of multiple stressors of human origin.


Subject(s)
Environmental Monitoring , Fishes , Floods/prevention & control , Rivers , Water Pollution, Chemical/adverse effects , Water Supply , Animals , Biota , Croatia , Introduced Species , Water Movements , Water Quality
6.
BMC Genomics ; 18(1): 147, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28183283

ABSTRACT

BACKGROUND: Intermuscular bones (IBs) and ribs both are a part of skeletal system in teleosts, but with different developing process. The chemical composition of fish IBs and ribs as well as the underlying mechanism about their development have not been investigated. In the present study, histological structures showed that one bone cavity containing osteoclasts were existed in ribs, but not in IBs of Megalobrama amblycephala. We constructed the first proteomics map for fish bones including IBs and ribs, and identified the differentially expressed proteins between IBs and ribs through iTRAQ LC-MS/MS proteomic analysis. RESULTS: The proteins extracted from IBs and ribs at 1- to 2-year old M. amblycephala were quantified 2,342 proteins, with 1,451 proteins annotated with GO annotation in biological processes, molecular function and cellular component. A number of bone related proteins as well as pathways were identified in the study. A total of 93 and 154 differently expressed proteins were identified in comparison groups of 1-IB-vs-1-Rib and 2-IB-vs-2-Rib, which indicated the obvious differences of chemical composition between these two bone tissues. The two proteins (vitronectin b precursor and matrix metalloproteinase-2) related to osteoclasts differentiation were significantly up-regulated in ribs compared with IBs (P < 0.05), which was in accordance with the results from histological structures. In comparison groups of 1-IB-vs-2-IB and 1-Rib-vs-2-Rib, 33 and 51 differently expressed proteins were identified and the function annotation results showed that these proteins were involved in regulating bone development and differentiation. Subsequently, 11 and 13 candidate proteins in comparison group of 1-IB-vs-1-Rib and 1-IB-vs-2-IB related to bone development were validated by MRM assays. CONCLUSIONS: Our present study suggested the different key proteins involved in the composition of fish ribs and IBs as well as their growth development. These findings could provide important clues towards further understanding of fish skeletal system and the roles of proteins playing in regulating diverse biological processes in fish.


Subject(s)
Bone Development , Cyprinidae/growth & development , Cyprinidae/metabolism , Muscles/metabolism , Proteomics , Ribs/growth & development , Ribs/metabolism , Animals , Fish Proteins/metabolism
7.
Sci Rep ; 6: 31845, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27545457

ABSTRACT

Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish.


Subject(s)
Cypriniformes/growth & development , Fish Proteins/genetics , Gene Expression Profiling/methods , Animals , Cypriniformes/genetics , Gene Expression Regulation, Developmental , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Intestines/growth & development , Molecular Sequence Annotation , Sequence Analysis, RNA/methods
8.
Article in English | MEDLINE | ID: mdl-24491103

ABSTRACT

Cobitis elongatoides is a small sized freshwater fish species that is widely distributed in Europe, especially in Croatia. In this study, the complete mitochondrial genome of C. elongatoides is sequenced to be 16,540 bp in length, including 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, a control region and the origin of the light strand replication. The overall base composition of C. elongatoides in descending order is A 29.37%, T 28.53%, C 25.34%, and G 16.76%, with a slight A + T bias. The mitogenome sequence data may provide useful information to the population genetics analysis of C. elongatoides and the elucidation of evolutionary mechanisms in Cobitidae.


Subject(s)
Cypriniformes/genetics , Genome, Mitochondrial , Animals , Base Composition/genetics , Base Pairing , Base Sequence , DNA, Mitochondrial/genetics , Open Reading Frames/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...