Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4751, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550318

ABSTRACT

Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.


Subject(s)
Chiroptera , Urbanization , Animals , Bees , Syndrome , Ecosystem , Biodiversity , Birds
2.
Proc Biol Sci ; 290(1992): 20222326, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36750186

ABSTRACT

Forage fishes are key energy conduits that transfer primary and secondary productivity to higher trophic levels. As novel environmental conditions caused by climate change alter ecosystems and predator-prey dynamics, there is a critical need to understand how forage fish control bottom-up forcing of food web dynamics. In the northeast Pacific, northern anchovy (Engraulis mordax) is an important forage species with high interannual variability in population size that subsequently impacts the foraging and reproductive ecology of marine predators. Anchovy habitat suitability from a species distribution model (SDM) was assessed as an indicator of the diet, distribution and reproduction of four predator species. Across 22 years (1998-2019), this anchovy ecosystem indicator (AEI) was significantly positively correlated with diet composition of all species and the distribution of common murres (Uria aalge), Brandt's cormorants (Phalacrocorax penicillatus) and California sea lions (Zalophus californianus), but not rhinoceros auklets (Cerorhinca monocerata). The capacity for the AEI to explain variability in predator reproduction varied by species but was strongest with cormorants and sea lions. The AEI demonstrates the utility of forage SDMs in creating ecosystem indicators to guide ecosystem-based management.


Subject(s)
Charadriiformes , Ecosystem , Animals , Food Chain , Birds , Fishes , Reproduction
3.
Sci Rep ; 12(1): 21554, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513681

ABSTRACT

Whale entanglements with fishing gear, exacerbated by changing environmental conditions, pose significant risk to whale populations. Management tools used to reduce entanglement risk, for example temporary area restrictions on fishing, can have negative economic consequences for fishing communities. Balancing whale protection with sustaining productive fisheries is therefore a challenge experienced worldwide. In the California Current Ecosystem, ecosystem indicators have been used to understand the environmental dynamics that lead to increased whale entanglement risk in a lucrative crab fishery. However, an assessment of socio-economic risk for this fishery, as in many other regions, is missing. We estimate retrospectively the losses from ex-vessel revenue experienced by commercial Dungeness crab fishers in California during two seasons subject to whale entanglement mitigation measures using a Linear-Cragg hurdle modeling approach which incorporated estimates of pre-season crab abundance. In the 2020 fishing season, our results suggest total revenues would have been $14.4 million higher in the Central Management Area of California in the absence of closures and other disturbances. In the 2019 fishing season, our results suggest ex-vessel revenues would have been $9.4 million higher in the Central Management Area and $0.3 million higher in the Northern Management Area. Our evaluation should motivate the development of strategies which maximize whale protection whilst promoting productive, sustainable and economically-viable fisheries.


Subject(s)
Brachyura , Fisheries , Animals , Whales , Ecosystem , Retrospective Studies , Seasons , Conservation of Natural Resources/methods
4.
Glob Chang Biol ; 28(22): 6586-6601, 2022 11.
Article in English | MEDLINE | ID: mdl-35978484

ABSTRACT

Projecting the future distributions of commercially and ecologically important species has become a critical approach for ecosystem managers to strategically anticipate change, but large uncertainties in projections limit climate adaptation planning. Although distribution projections are primarily used to understand the scope of potential change-rather than accurately predict specific outcomes-it is nonetheless essential to understand where and why projections can give implausible results and to identify which processes contribute to uncertainty. Here, we use a series of simulated species distributions, an ensemble of 252 species distribution models, and an ensemble of three regional ocean climate projections, to isolate the influences of uncertainty from earth system model spread and from ecological modeling. The simulations encompass marine species with different functional traits and ecological preferences to more broadly address resource manager and fishery stakeholder needs, and provide a simulated true state with which to evaluate projections. We present our results relative to the degree of environmental extrapolation from historical conditions, which helps facilitate interpretation by ecological modelers working in diverse systems. We found uncertainty associated with species distribution models can exceed uncertainty generated from diverging earth system models (up to 70% of total uncertainty by 2100), and that this result was consistent across species traits. Species distribution model uncertainty increased through time and was primarily related to the degree to which models extrapolated into novel environmental conditions but moderated by how well models captured the underlying dynamics driving species distributions. The predictive power of simulated species distribution models remained relatively high in the first 30 years of projections, in alignment with the time period in which stakeholders make strategic decisions based on climate information. By understanding sources of uncertainty, and how they change at different forecast horizons, we provide recommendations for projecting species distribution models under global climate change.


Subject(s)
Climate Change , Ecosystem , Fisheries , Forecasting , Uncertainty
5.
Nature ; 604(7906): 486-490, 2022 04.
Article in English | MEDLINE | ID: mdl-35444322

ABSTRACT

Marine heatwaves (MHWs)-periods of exceptionally warm ocean temperature lasting weeks to years-are now widely recognized for their capacity to disrupt marine ecosystems1-3. The substantial ecological and socioeconomic impacts of these extreme events present significant challenges to marine resource managers4-7, who would benefit from forewarning of MHWs to facilitate proactive decision-making8-11. However, despite extensive research into the physical drivers of MHWs11,12, there has been no comprehensive global assessment of our ability to predict these events. Here we use a large multimodel ensemble of global climate forecasts13,14 to develop and assess MHW forecasts that cover the world's oceans with lead times of up to a year. Using 30 years of retrospective forecasts, we show that the onset, intensity and duration of MHWs are often predictable, with skilful forecasts possible from 1 to 12 months in advance depending on region, season and the state of large-scale climate modes, such as the El Niño/Southern Oscillation. We discuss considerations for setting decision thresholds based on the probability that a MHW will occur, empowering stakeholders to take appropriate actions based on their risk profile. These results highlight the potential for operational MHW forecasts, analogous to forecasts of extreme weather phenomena, to promote climate resilience in global marine ecosystems.

6.
PeerJ ; 9: e12238, 2021.
Article in English | MEDLINE | ID: mdl-34721967

ABSTRACT

The temporal dynamics of five copepod species common to coastal waters of the Pacific Northwest were examined in relation to variability in spring temperature and phytoplankton dynamics in 2008, 2009, and 2010 in Rivers Inlet, British Columbia, Canada. The five species were differentiated by life history strategies. Acartia longiremis, Metridia pacifica, and Paraeuchaeta elongata remained active over most of the year. By contrast, the reproductive effort of Eucalanus bungii and Calanus marshallae was concentrated over the spring period and they spent most of the year in diapause as C5 copepodites. A delay in the timing of the spring bloom was associated with a shift in the phenology of all species. However, following the delay in spring bloom timing, recruitment to the G1 cohort was reduced only for E. bungii and C. marshallae. Recruitment successes of E. bungii and C. marshallae was also drastically reduced in 2010, an El Niño year, when spring temperatures were highest. Reasons for the observed differential response to spring environmental forcing, and its effect on upper trophic levels, are discussed.

7.
Ecol Appl ; 27(2): 378-388, 2017 03.
Article in English | MEDLINE | ID: mdl-28221708

ABSTRACT

Populations of small pelagic fish are strongly influenced by climate. The inability of managers to anticipate environment-driven fluctuations in stock productivity or distribution can lead to overfishing and stock collapses, inflexible management regulations inducing shifts in the functional response to human predators, lost opportunities to harvest populations, bankruptcies in the fishing industry, and loss of resilience in the human food supply. Recent advances in dynamical global climate prediction systems allow for sea surface temperature (SST) anomaly predictions at a seasonal scale over many shelf ecosystems. Here we assess the utility of SST predictions at this "fishery relevant" scale to inform management, using Pacific sardine as a case study. The value of SST anomaly predictions to management was quantified under four harvest guidelines (HGs) differing in their level of integration of SST data and predictions. The HG that incorporated stock biomass forecasts informed by skillful SST predictions led to increases in stock biomass and yield, and reductions in the probability of yield and biomass falling below socioeconomic or ecologically acceptable levels. However, to mitigate the risk of collapse in the event of an erroneous forecast, it was important to combine such forecast-informed harvest controls with additional harvest restrictions at low biomass.


Subject(s)
Climate , Conservation of Natural Resources/methods , Fisheries , Fishes , Animals , Biomass , Pacific Ocean , Pacific States , Seasons , Temperature , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...