Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-499583

ABSTRACT

SARS-CoV-2 is a positive single-stranded RNA virus that interacts with proteins of infected cells at different stages of its life cycle. These interactions are necessary for the host to recognize and block the replication of the virus. Yet, if cells fail to block SARS-CoV-2, host proteins are recruited to translate, transcribe and replicate the genetic material of the virus. To identify the host proteins that bind to SARS-CoV-2 RNA, we adopted the RNA-Protein Interaction Detection coupled to Mass Spectrometry (RaPID-MS) technology, which allows the purification and identification by MS-based proteomics of the proteins associated with a specific RNA of interest expressed in mammalian cells. We specifically investigated proteins associated with the 5' and 3' end regions of SARS-CoV-2 RNA. As associations might involve non-physical protein-RNA interactions, we defined a set of reliable protein-RNA interactions by exploiting the predictive power of the catRAPID algorithm that assesses the direct binding potential of proteins to a given RNA region. Among these specific SARS-CoV-2 RNA end interactors, we identified the pseudouridine synthase PUS7 that binds to both 5' and 3' ends of viral RNA, which harbor the canonical consensus sequence modified by PUS7. We corroborated our results through SARS-CoV-2 RNA analysis by nanopore direct RNA sequencing. Indeed, these PUS7 consensus regions were found highly modified on viral RNAs, as demonstrated by ionic current features that are significantly different compared to the unmodified in vitro transcribed RNA. Overall, our data map the specific host protein interactions of SARS-CoV-2 RNA and point to a role for cellular pseudouridine synthases and the post-transcriptional pseudouridine modifications in the viral life cycle.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-469860

ABSTRACT

The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested sub genomic RNAs used to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do not detect the 5' cap, thus preventing reliable identification and quantification of full-length, coding transcript models. Here we used Nanopore ReCappable Sequencing (NRCeq), a new technique that can identify capped full-length RNAs, to assemble a complete annotation of SARS-CoV-2 sgRNAs and annotate the location of capping sites across the viral genome. We obtained robust estimates of sgRNA expression across cell lines and viral isolates and identified novel canonical and non-canonical sgRNAs, including one that uses a previously un-annotated leader-to-body junction site. The data generated in this work constitute a useful resource for the scientific community and provide important insights into the mechanisms that regulate the transcription of SARS-CoV-2 sgRNAs.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-441948

ABSTRACT

Tissue-resident macrophages exert critical but conflicting effects on the progression of coronavirus infections by secreting both anti-viral type I Interferons and tissue-damaging inflammatory cytokines. Steroids, the only class of host-targeting drugs approved for Covid19, indiscriminately suppress both responses, possibly impairing viral clearance, and provide limited clinical benefit. Here we set up a mouse in vitro co-culture system that reproduces the macrophage response to SARS-CoV2 seen in patients and allows quantitation of inflammatory and antiviral activities. We show that the NFKB-dependent inflammatory response can be selectively inhibited by ablating the lysine-demethylase LSD1, which additionally unleashed interferon-independent ISG activation and blocked viral egress through the lysosomal pathway. These results provide a rationale for repurposing LSD1 inhibitors, a class of drugs extensively studied in oncology, for Covid-19 treatment. One-Sentence SummaryTargeting a chromatin-modifying enzyme in coronavirus infections curbs tissue-damage without affecting antiviral response

SELECTION OF CITATIONS
SEARCH DETAIL
...