Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Laryngoscope Investig Otolaryngol ; 5(3): 536-545, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596498

ABSTRACT

BACKGROUND: Chronic otitis media (COM) is characterized by middle ear fluid predominantly containing cytokines, Nontypeable haemophilus influenzae (NTHi), the mucin MUC5B, and neutrophil extracellular traps (NETs). NETs consist of extracellular DNA coated with antibacterial proteins such as myeloperoxidase (MPO) and citrullinated histone 3 (CitH3). NETs can damage tissues and sustain inflammation. Our study aimed to develop an in vitro model of NETosis, testing COM inductors. METHODS: NETosis was evaluated in fresh blood human neutrophils attached to collagen-coated plates and in suspension exposed to phorbol myristate acetate (PMA) as a control, and COM relevant mediators. Confocal microscopy, DNA fluorescence assay and flow cytometry were used to quantify NETosis. RESULTS: PMA exposure induced DNA, MPO, and CitH3 by immunofluorescence (IF) most significantly at 3 hours (3.8-fold for DAPI, 7.6-fold for MPO, and 6.9-fold for CitH3, all P < .05). IL-8 and TNF-α cytokines showed milder increases of DAPI, MPO, and CitH3 positive cells. NTHi had no effect on these NETs markers. Purified salivary MUC5B (10 to 40 µg/mL) produced potent increases, comparable to PMA. A composite NET score summing the fold-increases for DAPI, MPO, and CitH3 demonstrated PMA at 13.6 to 19 relative to control set at 1; and MUC5B at 8.6 to 16.3 (all P < .05). IL-8 and TNF-α showed scores of 5.4 and 3, respectively, but these were not statistically significant. CONCLUSION: We developed a reliable in vitro assay for NETosis which demonstrated that salivary MUC5B is a potent inductor of NETs whereas IL-8, TNF-α, live and lyzed NTHi demonstrated minimal to no NETosis. LEVEL OF EVIDENCE: NA.

2.
Int J Mol Sci ; 21(1)2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31877727

ABSTRACT

Industrialization of stem-cell based therapies requires innovative solutions to close the gap between research and commercialization. Scalable cell production platforms are needed to reliably deliver the cell quantities needed during the various stages of development and commercial supply. Human pluripotent stem cells (hPSCs) are a key source material for generating therapeutic cell types. We have developed a closed, automated and scalable stirred tank bioreactor platform, capable of sustaining high fold expansion of hPSCs. Such a platform could facilitate the in-process monitoring and integration of online monitoring systems, leading to significantly reduced labor requirements and contamination risk. hPSCs are expanded in a controlled bioreactor using perfused xeno-free media. Cell harvest and concentration are performed in closed steps. The hPSCs can be cryopreserved to generate a bank of cells, or further processed as needed. Cryopreserved cells can be thawed into a two-dimensional (2D) tissue culture platform or a three-dimensional (3D) bioreactor to initiate a new expansion phase, or be differentiated to the clinically relevant cell type. The expanded hPSCs express hPSC-specific markers, have a normal karyotype and the ability to differentiate to the cells of the three germ layers. This end-to-end platform allows a large scale expansion of high quality hPSCs that can support the required cell demand for various clinical indications.


Subject(s)
Automation, Laboratory/methods , Cellular Reprogramming Techniques/methods , Induced Pluripotent Stem Cells/cytology , Primary Cell Culture/methods , Automation, Laboratory/instrumentation , Bioreactors , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Primary Cell Culture/instrumentation
3.
Int J Pediatr Otorhinolaryngol ; 80: 8-16, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26746604

ABSTRACT

BACKGROUND: Non-typeable Haemophilus influenzae (NTHi) is a ubiquitous bacterial pathogen which accounts for a majority of human upper respiratory tract infections. Laboratory lysate preparations from this bacterium are commonly utilized to investigate the promulgation of inflammatory responses in respiratory and middle ear epithelium both in vivo and in vitro. We undertook an unbiased proteomics based analysis of NTHi lysate preps to: (a) identify abundant bacterial proteins present in these lysates that could play a role in NTHi biological effects and (b) determine the protein content variability in different lysate prep batches from the same NTHI strain. STUDY DESIGN: Proteomic analysis of laboratory NTHi lysate preparations from clinical strain 12. METHODS: NTHi lysates were denatured, gel-fractionated, digested by trypsin and the generated peptides were identified using a liquid chromatography tandem mass spectrometry (LC-MS/MS). Western blot analyses for the important proinflammatory enhancer, outer membrane protein 6 (OMP6), was performed to validate the MS findings. Luciferase assays for NF-kB activation were used to measure the pro-inflammatory biologic effects from each NTHi lysate preparation. RESULTS: The MS identified 793 unique NTHi proteins. Most common and abundant proteins found have been described to either contribute to biofilm formation, elude the innate immune system, or activate epithelial pro-inflammatory pathways such as Toll Like Receptor 2 (TLR-2) signaling and NF-kB transcription factor. Strong positive signal for OMP6 was found in each of the NTHi lysate preparations. Significant NF-kB promoter response activation as expected with NTHi stimulation over control was also noted for each NTHi lysate preparation. CONCLUSIONS: Proteomics was a successful technique to broadly define the protein content of NTHi lysates. This is the first report of the proteome of NTHi lysates widely used in laboratories to study the biological effect of NTHi. Despite the variability of the protein composition from different preps, all the batches of NTHi lysates induced similar NFκB activation. LEVEL OF EVIDENCE: NA.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Haemophilus influenzae/metabolism , NF-kappa B/metabolism , Proteome , Bacterial Outer Membrane Proteins/genetics , Blotting, Western , Chromatography, Liquid , Haemophilus influenzae/genetics , NF-kappa B/genetics , Proteomics , Tandem Mass Spectrometry , Toll-Like Receptor 2/metabolism
4.
Am J Respir Cell Mol Biol ; 53(1): 22-32, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25692303

ABSTRACT

Alterations in epithelial secretions and mucociliary clearance contribute to chronic bacterial infection in cystic fibrosis (CF) lung disease, but whether CF lungs are unchanged in the absence of infection remains controversial. A proteomic comparison of airway secretions from subjects with CF and control subjects shows alterations in key biological processes, including immune response and proteolytic activity, but it is unclear if these are due to mutant CF transmembrane conductance regulator (CFTR) and/or chronic infection. We hypothesized that the CF lung apical secretome is altered under constitutive conditions in the absence of inflammatory cells and pathogens. To test this, we performed quantitative proteomics of in vitro apical secretions from air-liquid interface cultures of three life-extended CF (ΔF508/ΔF508) and three non-CF human bronchial epithelial cells after labeling of CF cells by stable isotope labeling with amino acids in cell culture. Mass spectrometry analysis identified and quantitated 666 proteins across samples, of which 70 exhibited differential enrichment or depletion in CF secretions (±1.5-fold change; P < 0.05). The key molecular functions were innate immunity (24%), cytoskeleton/extracellular matrix organization (24%), and protease/antiprotease activity (17%). Oxidative proteins and classical complement pathway proteins that are altered in CF secretions in vivo were not altered in vitro. Specific differentially increased proteins-MUC5AC and MUC5B mucins, fibronectin, and matrix metalloproteinase-9-were validated by antibody-based assays. Overall, the in vitro CF secretome data are indicative of a constitutive airway epithelium with altered innate immunity, suggesting that downstream consequences of mutant CFTR set the stage for chronic inflammation and infection in CF airways.


Subject(s)
Bronchi/metabolism , Cystic Fibrosis/metabolism , Proteome/metabolism , Proteomics , Respiratory Mucosa/metabolism , Bronchi/pathology , Cell Line , Chronic Disease , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Proteome/genetics , Respiratory Mucosa/pathology
5.
J Investig Med ; 63(2): 258-66, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25503091

ABSTRACT

BACKGROUND: Chronic otitis media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Staphylococcus epidermidis, typically considered a commensal organism, is very frequently recovered in chronic middle ear fluid and in middle ear biofilms. Although it has been shown to drive inflammation in sinonasal epithelium, the impact of S. epidermidis on COME is markedly understudied. The goal of this study was to examine the in vitro effects of S. epidermidis lysates on murine and human middle ear epithelial cells. METHODS: Staphylococcus epidermidis lysates were generated and used to stimulate submerged and differentiated human and murine epithelial cells (MEECs) for 24 to 48 hours. Quantitative real time-polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay, and immunocytochemistry techniques were performed to interrogate the mucin gene MUC5AC and MUC5B expression and protein production, chemokine response, as well as NF-κB activation. Luciferase reporter assays were performed to further evaluate nuclear factor κB (NF-κB) activation and query specific promoter responses after S. epidermidis exposure. RESULTS: Staphylococcus epidermidis induced a time- and dose-dependent MUC5AC and MUC5B overexpression along with a parallel overexpression of Cxcl2 in mouse MEEC and IL-8 in human MEEC. Further investigations in mMEEC showed a 1.3 to 1.5 induction of the MUC5AC and MUC5B promoters. As potential mechanisms for these responses, induction of an oxidative stress marker, along with early nuclear translocation and activation of NF-κB, was found. Finally, chronic exposure induced marked epithelial thickening of cells differentiated at the air liquid interface. CONCLUSIONS: Staphylococcus epidermidis lysates activate a proinflammatory response in MEEC, including mucin gene expression and protein production. Although typically considered a nonpathogenic commensal organism in the ear, these results suggest that they may play a role in the perpetuation of an inflammatory and mucogenic response in COME.


Subject(s)
Ear, Middle/microbiology , Ear, Middle/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Inflammation/pathology , Mucins/genetics , Staphylococcus epidermidis/physiology , Animals , Cell Line , Epithelial Cells/microbiology , Gene Expression Regulation , Humans , Inflammation/complications , Inflammation/genetics , Interleukin-8/genetics , Interleukin-8/metabolism , Mice , Mucins/metabolism , NF-kappa B/metabolism , Oxidative Stress , Proteomics , Staphylococcal Infections/complications , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...