Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 21(11)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503167

ABSTRACT

The potential barriers governing the motions of α-synuclein (αS) variants' hydration water, especially energetics of them, is in the focus of the work. The thermodynamical approach yielded essential information about distributions and heights of the potential barriers. The proteins' structural disorder was measured by ratios of heterogeneous water-binding interfaces. They showed the αS monomers, oligomers and amyloids to possess secondary structural elements, although monomers are intrinsically disordered. Despite their disordered nature, monomers have 33% secondary structure, and therefore they are more compact than a random coil. At the lowest potential barriers with mobile hydration water, monomers are already functional, a monolayer of mobile hydration water is surrounding them. Monomers realize all possible hydrogen bonds with the solvent water. αS oligomers and amyloids have half of the mobile hydration water amount than monomers because aggregation involves less mobile hydration. The solvent-accessible surface of the oligomers is ordered or homogenous in its interactions with water to 66%. As a contrast, αS amyloids are disordered or heterogeneous to 75% of their solvent accessible surface and both wild type and A53T amyloids show identical, low-level hydration. Mobile water molecules in the first hydration shell of amyloids are the weakest bound compared to other forms.


Subject(s)
alpha-Synuclein/chemistry , Amyloid/chemistry , Humans , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Mutation , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/chemistry , Solvents , Water/chemistry
3.
Sci Rep ; 9(1): 2947, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30814556

ABSTRACT

Hydration properties of folded and unfolded/disordered miniproteins were monitored in frozen solutions by wide-line 1H-NMR. The amount of mobile water as function of T (-80 °C < T < 0 °C) was found characteristically different for folded (TC5b), semi-folded (pH < 3, TCb5(H+)) and disordered (TC5b_N1R) variants. Comparing results of wide-line 1H-NMR and molecular dynamics simulations we found that both the amount of mobile water surrounding proteins in ice, as well as their thaw profiles differs significantly as function of the compactness and conformational heterogeneity of their structure. We found that (i) at around -50 °C ~50 H2Os/protein melt (ii) if the protein is well-folded then this amount of mobile water remains quasi-constant up to -20 °C, (iii) if disordered then the quantity of the lubricating mobile water increases with T in a constant manner up to ~200 H2Os/protein by reaching -20 °C. Especially in the -55 °C ↔ -15 °C temperature range, wide-line 1H-NMR detects the heterogeneity of protein fold, providing the size of the hydration shell surrounding the accessible conformers at a given temperature. Results indicate that freezing of protein solutions proceeds by the gradual selection of the enthalpically most favored states that also minimize the number of bridging waters.


Subject(s)
Freezing , Ice , Protein Folding , Recombinant Proteins/chemistry , Bacteria/metabolism , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation , Protein Structure, Tertiary/physiology , Thermodynamics
4.
Int J Mol Sci ; 19(11)2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30424574

ABSTRACT

Here we present a novel method for the characterization of the hydration of protein solutions based on measuring and evaluating two-component wide-line ¹H NMR signals. We also provide a description of key elements of the procedure conceived for the thermodynamic interpretation of such results. These interdependent experimental and theoretical treatments provide direct experimental insight into the potential energy surface of proteins. The utility of our approach is demonstrated through the examples of two proteins of distinct structural classes: the globular, structured ubiquitin; and the intrinsically disordered ERD10 (early response to dehydration 10). We provide a detailed analysis and interpretation of data recorded earlier by cooling and slowly warming the protein solutions through thermal equilibrium states. We introduce and use order parameters that can be thus derived to characterize the distribution of potential energy barriers inhibiting the movement of water molecules bound to the surface of the protein. Our results enable a quantitative description of the ratio of ordered and disordered parts of proteins, and of the energy relations of protein⁻water bonds in aqueous solutions of the proteins.


Subject(s)
Protein Denaturation , Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Solubility , Solutions , Thermodynamics , Ubiquitin/chemistry
5.
Chemphyschem ; 19(7): 848-856, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29274195

ABSTRACT

Wide-line 1 H NMR measurements were extended and all results were reinterpreted in a new thermodynamics-based approach to study aqueous solutions of thymosin-ß4 (Tß4 ), stabilin C-terminal domain (CTD) and their 1:1 complex. The energy distributions of the potential barriers, which control motion of protein-bound water molecules, were determined. Heterogeneous and homogeneous regions were found at the protein-water interface. The measure of heterogeneity gives a quantitative value for the portion of disordered parts in the protein. Ordered structural elements were found extending up to 20 % of the whole proteins. About 40 % of the binding sites of free Tß4 become involved in bonds holding the complex together. The complex has the most heterogeneous solvent accessible surface (SAS) in terms of protein-water interactions. The complex is more disordered than Tß4 or stabilin CTD. The greater SAS area of the complex is interpreted as a clear sign of its open structure.


Subject(s)
Cell Adhesion Molecules, Neuronal/chemistry , Peptide Fragments/chemistry , Thymosin/chemistry , Water/chemistry , Humans , Motion , Protein Structure, Quaternary , Proton Magnetic Resonance Spectroscopy , Thermodynamics
6.
Chemphyschem ; 18(6): 677-682, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28066974

ABSTRACT

In this work the groundwork is laid for characterizing the mobility of hydrogen-hydrogen pairs (proton-proton radial vectors) in proteins in the solid state that contain only residual water. In this novel approach, we introduce new ways of analyzing and interpreting data: 1) by representing hydrogen mobility (HM) and melting diagram (MD) data recorded by wide-line 1 H NMR spectroscopic analysis as a function of fundamental temperature (thermal excitation energy); 2) by suggesting a novel mode of interpretation of these parameters that sheds light on details of protein-water interactions, such as the exact amount of water molecules and the distribution of barrier potentials pertaining to their rotational and surface translational mobility; 3) by relying on directly determined physical observables. We illustrate the power of this approach by studying the behavior of two proteins, the structured enzyme lysozyme and the intrinsically disordered ERD14.


Subject(s)
Arabidopsis Proteins/chemistry , Hydrogen/chemistry , Muramidase/chemistry , Water/chemistry , Muramidase/metabolism
7.
BMB Rep ; 49(9): 497-501, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27418282

ABSTRACT

Wide-line 1H NMR intensity and differential scanning calorimetry measurements were carried out on the intrinsically disordered 73-residue full transactivation domain (TAD) of the p53 tumor suppressor protein and two peptides: one a wild type p53 TAD peptide with a helix pre-structuring property, and a mutant peptide with a disabled helix-forming propensity. Measurements were carried out in order to characterize their water and ion binding characteristics. By quantifying the number of hydrate water molecules, we provide a microscopic description for the interactions of water with a wild-type p53 TAD and two p53 TAD peptides. The results provide direct evidence that intrinsically disordered proteins (IDPs) and a less structured peptide not only have a higher hydration capacity than globular proteins, but are also able to bind a larger amount of charged solute ions. [BMB Reports 2016; 49(9): 497-501].


Subject(s)
Calorimetry, Differential Scanning , Nuclear Magnetic Resonance, Biomolecular , Tumor Suppressor Protein p53/chemistry , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sodium Chloride/chemistry , Temperature , Transcriptional Activation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Water/chemistry
8.
Biochim Biophys Acta ; 1834(1): 342-50, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22906532

ABSTRACT

Human nucleolar phosphoprotein p140 (hNopp 140) is a highly phosphorylated protein inhibitor of casein kinase 2 (CK2). As in the case of many kinase-inhibitor systems, the inhibitor has been described to belong to the family of intrinsically disordered proteins (IDPs), which often utilize transient structural elements to bind their cognate enzyme. Here we investigated the structural status of this protein both to provide distinct lines of evidence for its disorder and to point out its transient structure potentially involved in interactions and also its tendency to aggregate. Structural disorder of hNopp140 is apparent by its anomalous electrophoretic mobility, protease sensitivity, heat stability, hydrodynamic behavior on size-exclusion chromatography, (1)H NMR spectrum and differential scanning calorimetry scan. hNopp140 has a significant tendency to aggregate and the change of its circular dichroism spectrum in the presence of 0-80% TFE suggests a tendency to form local helical structures. Wide-line NMR measurements suggest the overall disordered character of the protein. In all, our data suggest that this protein falls into the pre-molten globule state of IDPs, with a significant tendency to become ordered in the presence of its partner as demonstrated in the presence of transcription factor IIB (TFIIB).


Subject(s)
Nuclear Proteins/chemistry , Phosphoproteins/chemistry , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/chemistry , Casein Kinase II/metabolism , Circular Dichroism , Humans , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Transcription Factor TFIIB/chemistry , Transcription Factor TFIIB/metabolism
9.
Intrinsically Disord Proteins ; 1(1): e25767, 2013.
Article in English | MEDLINE | ID: mdl-28516019

ABSTRACT

The mobility of the proton-proton radial vectors is introduced as a quantitative measure for the structural dynamics of organic materials, especially protein molecules. As defined for the entire molecule, the hydrogen mobility (HM) is proposed as an "order parameter," which describes the effect of motional narrowing on inter-proton dipole-dipole interactions. HM satisfies all requirements of an order parameter in the Landau molecular field theory of phase transitions. The wide-line NMR second moments needed to obtain HM are exactly defined and measurable physical quantities, which are not produced by mathematical fitting and do not carry the limitations and restrictions of any model (theoretical formalism). We first demonstrate the usefulness of HM on small organic molecules with data taken form the literature. We outline its link with structural and functional characteristics on a range of proteins: HM provides a model-free parameter based on first principles that can clearly distinguish between globular and intrinsically disordered proteins, and can also provide insight into the behavior of disease-related mutants.

10.
Intrinsically Disord Proteins ; 1(1): e26204, 2013.
Article in English | MEDLINE | ID: mdl-28516021

ABSTRACT

Thymosine ß4 (Tß4) is a 43 amino acid long intrinsically disordered protein (IDP), which was initially identified as an actin-binding and sequestering molecule. Later it was described to have multiple other functions, such as regulation of endothelial cell differentiation, blood vessel formation, wound repair, cardiac cell migration, and survival.1 The various functions of Tß4 are mediated by interactions with distinct and structurally unrelated partners, such as PINCH, ILK, and stabilin-2, besides the originally identified G-actin. Although the cellular readout of these interactions and the formation of these complexes have been thoroughly described, no attempt was made to study these interactions in detail, and to elucidate the thermodynamic, kinetic, and structural underpinning of this range of moonlighting functions. Because Tß4 is mostly disordered, and its 4 described partners are structurally unrelated (the CTD of stabilin-2 is actually fully disordered), it occurred to us that this system might be ideal to characterize the structural adaptability and ensuing moonlighting functions of IDPs. Unexpectedly, we found that Tß4 engages in multiple weak, transient, and fuzzy interactions, i.e., it is capable of mediating distinct yet specific interactions without adapting stable folded structures.

11.
FEBS J ; 276(14): 3744-56, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19523119

ABSTRACT

CASK-interactive protein1 is a newly recognized post-synaptic density protein in mammalian neurons. Although its N-terminal region contains several well-known functional domains, its entire C-terminal proline-rich region of 800 amino acids lacks detectable sequence homology to any previously characterized protein. We used multiple techniques for the structural characterization of this region and its three fragments. By bioinformatics predictions, CD spectroscopy, wide-line and 1H-NMR spectroscopy, limited proteolysis and gel filtration chromatography, we provided evidence that the entire proline-rich region of CASK-interactive protein1 is intrinsically disordered. We also showed that the proline-rich region is biochemically functional, as it interacts with the adaptor protein Abl-interactor-2. To extend the finding of a high level of disorder in this scaffold protein, we collected 74 scaffold proteins (also including proteins denoted as anchor and docking), and predicted their disorder by three different algorithms. We found that a very high fraction (53.6; on average) of the residues fall into local disorder and their ordered domains are connected by linker regions which are mostly disordered (64.5 on average). Because of this high frequency of disorder, the usual design of scaffold proteins of short globular domains (86 amino acids on average) connected by longer linker regions (140 amino acids on average) and the noted binding functions of these regions in both CASK-interactive protein1 and the other proteins studied, we suggest that structurally disordered regions prevail and play key recognition roles in scaffold proteins.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Motifs , Animals , COS Cells , Chlorocebus aethiops , Circular Dichroism , Magnetic Resonance Spectroscopy , Neurons/metabolism , Protein Binding , Rats
12.
Biophys J ; 96(7): 2789-98, 2009 Apr 08.
Article in English | MEDLINE | ID: mdl-19348762

ABSTRACT

Wide-line 1H-NMR and differential scanning calorimetry measurements were done in aqueous solutions and on lyophilized samples of human ubiquitin between -70 degrees C and +45 degrees C. The measured properties (size, thermal evolution, and wide-line NMR spectra) of the protein-water interfacial region are substantially different in the double-distilled and buffered-water solutions of ubiquitin. The characteristic transition in water mobility is identified as the melting of the nonfreezing/hydrate water. The amount of water in the low-temperature mobile fraction is 0.4 g/g protein for the pure water solution. The amount of mobile water is higher and its temperature dependence more pronounced for the buffered solution. The specific heat of the nonfreezing/hydrate water was evaluated using combined differential scanning calorimetry and NMR data. Considering the interfacial region as an independent phase, the values obtained are 5.0-5.8 J x g(-1) x K(-1), and the magnitudes are higher than that of pure/bulk water (4.2 J x g(-1) x K(-1)). This unexpected discrepancy can only be resolved in principle by assuming that hydrate water is in tight H-bond coupling with the protein matrix. The specific heat for the system composed of the protein molecule and its hydration water is 2.3 J x g(-1) x K(-1). It could be concluded that the protein ubiquitin and its hydrate layer behave as a highly interconnected single phase in a thermodynamic sense.


Subject(s)
Ubiquitin/chemistry , Ubiquitin/metabolism , Water/chemistry , Water/metabolism , Calorimetry, Differential Scanning , Freeze Drying , Freezing , Hot Temperature , Humans , Magnetic Resonance Spectroscopy , Solutions , Surface Properties , Thermodynamics
13.
J Proteome Res ; 7(6): 2291-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18484763

ABSTRACT

Protein disorder is predicted to be widespread in eukaryotic proteomes, although direct experimental evidence is rather limited so far. To fill this gap and to unveil the identity of novel intrinsically disordered proteins (IDPs), proteomic methods that combine 2D electrophoresis with mass spectrometry have been developed. Here, we applied the method developed in our laboratory [ Csizmok et al., Mol. Cell. Proteomics 2006, 5, 265- 273 ] to the proteome of Drosophila melanogaster. Protein Df31, earlier described as a histone chaperone involved in chromatin decondensation and stabilization, was among the IDPs identified. Despite some hints at the unusual structural behavior of Df31, this protein has not yet been structurally characterized. Here, we provide evidence by a variety of techniques such as CD, NMR, gel-filtration, limited proteolyzsis and bioinformatics that Df31 is intrinsically disordered along its entire length. Further, by chemical cross-linking, we provide evidence that it is a monomeric protein, and suggest that its function(s) may benefit from having an extended and highly flexible structural state. The potential functional advantages and the generality of protein disorder among chromatin organizing proteins are discussed in detail. Finally, we also would like to point out the utility of our 2DE/MS technique for discoveringor, as a matter of fact, rediscoveringIDPs even from the complicated proteome of an advanced eukaryote.


Subject(s)
Chromosomal Proteins, Non-Histone/chemistry , Drosophila Proteins/chemistry , Animals , Calorimetry, Differential Scanning , Chromatography, Gel , Chromosomal Proteins, Non-Histone/analysis , Circular Dichroism , Computational Biology , Cross-Linking Reagents/chemistry , Drosophila Proteins/analysis , Electrophoresis, Gel, Two-Dimensional/methods , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Peptide Hydrolases/chemistry , Protein Conformation , Protein Denaturation , Static Electricity , Tandem Mass Spectrometry
14.
Nat Mater ; 4(10): 764-7, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16142242

ABSTRACT

Cubane (C8H8) and fullerene (C60) are famous cage molecules with shapes of platonic or archimedean solids. Their remarkable chemical and solid-state properties have induced great scientific interest. Both materials form polymorphic crystals of molecules with variable orientational ordering. The idea of intercalating fullerene with cubane was raised several years ago but no attempts at preparation have been reported. Here we show that C60 and similarly C70 form high-symmetry molecular crystals with cubane owing to topological molecular recognition between the convex surface of fullerenes and the concave cubane. Static cubane occupies the octahedral voids of the face-centred-cubic structures and acts as a bearing between the rotating fullerene molecules. The smooth contact of the rotor and stator molecules decreases significantly the temperature of orientational ordering. These materials have great topochemical importance: at elevated temperatures they transform to high-stability covalent derivatives although preserving their crystalline appearance. The size-dependent molecular recognition promises selective formation of related structures with higher fullerenes and/or substituted cubanes.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Crystallization/methods , Fullerenes/chemistry , Molecular Motor Proteins/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Carbon Compounds, Inorganic/analysis , Fullerenes/analysis , Hot Temperature , Materials Testing , Molecular Conformation , Nanostructures/analysis , Phase Transition
15.
Biochemistry ; 44(10): 3955-64, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15751971

ABSTRACT

Intrinsically unstructured proteins (IUPs) exist in a disordered conformational state, often considered to be equivalent with the random-coil structure. We challenge this simplifying view by limited proteolysis, circular dichroism (CD) spectroscopy, and solid-state (1)H NMR, to show short- and long-range structural organization in two IUPs, the first inhibitory domain of calpastatin (CSD1) and microtubule-associated protein 2c (MAP2c). Proteases of either narrow (trypsin, chymotrypsin, and plasmin) or broad (subtilisin and proteinase K) substrate specificity, applied at very low concentrations, preferentially cleaved both proteins in regions, i.e., subdomains A, B, and C in CSD1 and the proline-rich region (PRR) in MAP2c, that are destined to form contacts with their targets. For CSD1, nonadditivity of the CD spectra of its two halves and suboptimal hydration of the full-length protein measured by solid-state NMR demonstrate that long-range tertiary interactions provide the structural background of this structural feature. In MAP2c, such tertiary interactions are absent, which points to the importance of local structural constraints. In fact, urea and temperature dependence of the CD spectrum of its PRR reveals the presence of the extended and rather stiff polyproline II helix conformation that keeps the interaction site exposed. These data suggest that functionally significant residual structure exists in both of these IUPs. This structure, manifest as either transient local and/or global organization, ensures the spatial exposure of short contact segments on the surface. Pertinent data from other IUPs suggest that the presence of such recognition motifs may be a general feature of disordered proteins. To emphasize the possible importance of this structural trait, we propose that these motifs be called primary contact sites in IUPs.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Calcium-Binding Proteins/genetics , Chymotrypsin/metabolism , Circular Dichroism , Endopeptidase K/metabolism , Fibrinolysin/metabolism , Humans , Hydrolysis , Microtubule-Associated Proteins/genetics , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Structure, Tertiary , Rats , Structure-Activity Relationship , Substrate Specificity , Subtilisin/metabolism , Trypsin/metabolism
16.
Biophys J ; 88(3): 2030-7, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15613629

ABSTRACT

Intrinsically unstructured/disordered proteins (IUPs) exist in a disordered and largely solvent-exposed, still functional, structural state under physiological conditions. As their function is often directly linked with structural disorder, understanding their structure-function relationship in detail is a great challenge to structural biology. In particular, their hydration and residual structure, both closely linked with their mechanism of action, require close attention. Here we demonstrate that the hydration of IUPs can be adequately approached by a technique so far unexplored with respect to IUPs, solid-state NMR relaxation measurements. This technique provides quantitative information on various features of hydrate water bound to these proteins. By freezing nonhydrate (bulk) water out, we have been able to measure free induction decays pertaining to protons of bound water from which the amount of hydrate water, its activation energy, and correlation times could be calculated. Thus, for three IUPs, the first inhibitory domain of calpastatin, microtubule-associated protein 2c, and plant dehydrin early responsive to dehydration 10, we demonstrate that they bind a significantly larger amount of water than globular proteins, whereas their suboptimal hydration and relaxation parameters are correlated with their differing modes of function. The theoretical treatment and experimental approach presented in this article may have general utility in characterizing proteins that belong to this novel structural class.


Subject(s)
Arabidopsis Proteins/chemistry , Calcium-Binding Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Microtubule-Associated Proteins/chemistry , Solvents/chemistry , Water/chemistry , Arabidopsis Proteins/analysis , Calcium-Binding Proteins/analysis , Freezing , Kinetics , Microtubule-Associated Proteins/analysis , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...