Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 14(8): e0220143, 2019.
Article in English | MEDLINE | ID: mdl-31415580

ABSTRACT

PURPOSE: To evaluate the roles of known myopia-associated genetic variants for development of myopic macular degeneration (MMD) in individuals with high myopia (HM), using case-control studies from the Consortium of Refractive Error and Myopia (CREAM). METHODS: A candidate gene approach tested 50 myopia-associated loci for association with HM and MMD, using meta-analyses of case-control studies comprising subjects of European and Asian ancestry aged 30 to 80 years from 10 studies. Fifty loci with the strongest associations with myopia were chosen from a previous published GWAS study. Highly myopic (spherical equivalent [SE] ≤ -5.0 diopters [D]) cases with MMD (N = 348), and two sets of controls were enrolled: (1) the first set included 16,275 emmetropes (SE ≤ -0.5 D); and (2) second set included 898 highly myopic subjects (SE ≤ -5.0 D) without MMD. MMD was classified based on the International photographic classification for pathologic myopia (META-PM). RESULTS: In the first analysis, comprising highly myopic cases with MMD (N = 348) versus emmetropic controls without MMD (N = 16,275), two SNPs were significantly associated with high myopia in adults with HM and MMD: (1) rs10824518 (P = 6.20E-07) in KCNMA1, which is highly expressed in human retinal and scleral tissues; and (2) rs524952 (P = 2.32E-16) near GJD2. In the second analysis, comprising highly myopic cases with MMD (N = 348) versus highly myopic controls without MMD (N = 898), none of the SNPs studied reached Bonferroni-corrected significance. CONCLUSIONS: Of the 50 myopia-associated loci, we did not find any variant specifically associated with MMD, but the KCNMA1 and GJD2 loci were significantly associated with HM in highly myopic subjects with MMD, compared to emmetropes.


Subject(s)
Genetic Variation , Macular Degeneration/complications , Macular Degeneration/genetics , Myopia/complications , Aged, 80 and over , Case-Control Studies , Female , Gene Expression Profiling , Humans , Phenotype
3.
Hum Genet ; 120(5): 663-70, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17024374

ABSTRACT

Ellis-van Creveld syndrome (EvC) is caused by mutations in EVC and EVC2, genes in a divergent orientation separated by only 2.6 kb. We systematically sought mutations in both genes in a panel of 65 affected individuals to assess the proportion of cases resulting from mutations in each gene. We PCR amplified and sequenced the coding exons of both genes. We investigated mutations that could affect splicing by in vitro splicing assays and cDNA analysis. We have identified EVC mutations in 20 cases (31%); in all of these we have detected the mutation on each allele. We have identified EVC2 mutations in 25 cases (38%); in 22 of these we have isolated a mutation on each allele. The majority of the mutations introduce a premature termination codon. We sequenced the region between the two genes in 10 of the 20 cases in which we had not identified a mutation in either gene, revealing only one SNP that was not a common polymorphism. As we have not identified mutations in either gene in 20 cases (31%) it is possible that there is further genetic heterogeneity.


Subject(s)
Ellis-Van Creveld Syndrome/genetics , Mutation , Proteins/genetics , Alternative Splicing , Cell Line , DNA Mutational Analysis , Ellis-Van Creveld Syndrome/pathology , Humans , Intercellular Signaling Peptides and Proteins , Lymphocytes/cytology , Lymphocytes/metabolism , Membrane Proteins , Promoter Regions, Genetic
4.
Am J Hum Genet ; 72(3): 728-32, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12571802

ABSTRACT

Ellis-van Creveld syndrome (EvC) is an autosomal recessive skeletal dysplasia. Elsewhere, we described mutations in EVC in patients with this condition (Ruiz-Perez et al. 2000). We now report that mutations in EVC2 also cause EvC. These two genes lie in a head-to-head configuration that is conserved from fish to man. Affected individuals with mutations in EVC and EVC2 have the typical spectrum of features and are phenotypically indistinguishable.


Subject(s)
Ellis-Van Creveld Syndrome/genetics , Point Mutation , Proteins/genetics , Amino Acid Substitution , Animals , Chromosome Mapping , Conserved Sequence , Exons , Female , Fishes , Genes, Recessive , Humans , Intercellular Signaling Peptides and Proteins , Male , Molecular Sequence Data , Pedigree , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...