Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 12046, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30104685

ABSTRACT

Burkitt lymphoma (BL) is a highly aggressive B-cell lymphoma associated with MYC translocation. Here, we describe drug response profiling of 42 blood cancer cell lines including 17 BL to 32 drugs targeting key cancer pathways and provide a systematic study of drug combinations in BL cell lines. Based on drug response, we identified cell line specific sensitivities, i.e. to venetoclax driven by BCL2 overexpression and partitioned subsets of BL driven by response to kinase inhibitors. In the combination screen, including BET, BTK and PI3K inhibitors, we identified synergistic combinations of PI3K and BTK inhibition with drugs targeting Akt, mTOR, BET and doxorubicin. A detailed comparison of PI3K and BTKi combinations identified subtle differences, in line with convergent pathway activity. Most synergistic combinations were identified for the BET inhibitor OTX015, which showed synergistic effects for 41% of combinations including inhibitors of PI3K/AKT/mTOR signalling. The strongest synergy was observed for the combination of the CDK 2/7/9 inhibitor SNS032 and OTX015. Our data provide a landscape of drug combination effects in BL and suggest that targeting CDK and BET could provide a novel vulnerability of BL.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Burkitt Lymphoma/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Acetanilides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Burkitt Lymphoma/pathology , Cell Line, Tumor , Drug Combinations , Drug Synergism , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Oxazoles/pharmacology , Sulfonamides/pharmacology , Thiazoles/pharmacology
2.
Leukemia ; 32(3): 774-787, 2018 03.
Article in English | MEDLINE | ID: mdl-28804127

ABSTRACT

T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive neoplasm of mature T-cells with an urgent need for rationally designed therapies to address its notoriously chemo-refractory behavior. The median survival of T-PLL patients is <2 years and clinical trials are difficult to execute. Here we systematically explored the diversity of drug responses in T-PLL patient samples using an ex vivo drug sensitivity and resistance testing platform and correlated the findings with somatic mutations and gene expression profiles. Intriguingly, all T-PLL samples were sensitive to the cyclin-dependent kinase inhibitor SNS-032, which overcame stromal-cell-mediated protection and elicited robust p53-activation and apoptosis. Across all patients, the most effective classes of compounds were histone deacetylase, phosphoinositide-3 kinase/AKT/mammalian target of rapamycin, heat-shock protein 90 and BH3-family protein inhibitors as well as p53 activators, indicating previously unexplored, novel targeted approaches for treating T-PLL. Although Janus-activated kinase-signal transducer and activator of transcription factor (JAK-STAT) pathway mutations were common in T-PLL (71% of patients), JAK-STAT inhibitor responses were not directly linked to those or other T-PLL-specific lesions. Overall, we found that genetic markers do not readily translate into novel effective therapeutic vulnerabilities. In conclusion, novel classes of compounds with high efficacy in T-PLL were discovered with the comprehensive ex vivo drug screening platform warranting further studies of synergisms and clinical testing.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , High-Throughput Screening Assays , Leukemia, Prolymphocytic, T-Cell/genetics , Mutation , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Cell Cycle/genetics , Cell Line, Tumor , Chromosome Aberrations , Female , Gene Expression , Gene Expression Profiling , Humans , Janus Kinases/metabolism , Leukemia, Prolymphocytic, T-Cell/drug therapy , Leukemia, Prolymphocytic, T-Cell/metabolism , Male , Middle Aged , Molecular Targeted Therapy , Oxazoles/pharmacology , Phenotype , Protein Kinase Inhibitors/pharmacology , STAT Transcription Factors/metabolism , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...