Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 24(13): 2520-2525, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35324211

ABSTRACT

We report a method to convert substituted tropylium ions into benzenoid derivatives.

2.
J Org Chem ; 86(13): 9117-9133, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34134487

ABSTRACT

Hydroboration reaction of alkynes is one of the most synthetically powerful tools to access organoboron compounds, versatile precursors for cross-coupling chemistry. This type of reaction has traditionally been mediated by transition-metal or main group catalysts. Herein, we report a novel method using tropylium salts, typically known as organic oxidants and Lewis acids, to promote the hydroboration reaction of alkynes. A broad range of vinylboranes can be easily accessed via this metal-free protocol. Similar hydroboration reactions of alkenes and epoxides can also be efficiently catalyzed by the same tropylium catalysts. Experimental studies and DFT calculations suggested that the reaction follows an uncommon mechanistic pathway, which is triggered by the hydride abstraction of pinacolborane with tropylium ion. This is followed by a series of in situ counterion-activated substituent exchanges to generate boron intermediates that promote the hydroboration reaction.

3.
RSC Adv ; 9(28): 16215-16222, 2019 May 20.
Article in English | MEDLINE | ID: mdl-35521415

ABSTRACT

A Friedländer-based method for transition-metal free, aerobic synthesis of chromene-fused quinolinones is reported. The coupling of 4-hydrocoumarins and 2-aminobenzyl alcohols proceeds in the presence of acetic acid solvent and oxygen oxidant, affording 6H-chromeno[4,3-b]quinolin-6-ones in good to excellent yields. The reactions are tolerant of functionalities such as alkyl, methoxy, bromo, chloro, and N-heterocycle. Isosteric cyclic 1,3-diketones and 2-amino acetophenones also give fused quinolinones under reaction conditions. The method herein offers a rapid and benign synthesis of hitherto challenging N-heterocycles. To our best knowledge, such a convenient pathway to obtain chromene-fused quinolinones have not been known in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...