Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nutrition ; 79-80: 110973, 2020.
Article in English | MEDLINE | ID: mdl-32916379

ABSTRACT

OBJECTIVES: Metabolic syndrome (MetS), a multiplex risk factor for cardiovascular disease and type 2 diabetes, is increasingly prevalent worldwide. Ellagitannin geraniin, a polyphenol found in the rind of rambutan (Nephelium lappaceum), has demonstrated therapeutic effects against metabolism dysfunction. The aim of this study was to characterize the metabolic effects and possible mechanism of geraniin in rats with MetS induced by a high-fat diet (HFD). METHODS: MetS was induced in Sprague Dawley rats on an HFD, followed by a daily oral gavage of geraniin (25 mg/kg) for 4 wk. The outcomes of geraniin-treated rats were compared with those of untreated rats on either a control diet or an HFD and with rats with MetS treated with metformin on a daily basis (200 mg/kg). RESULTS: The supplementation of geraniin ameliorated multiple metabolic abnormalities caused by HFD, including hypertension, impaired glucose and lipid metabolism, ectopic fat deposition in the visceral fat and liver, and disturbed antioxidant mechanism and inflammatory response. The benefits conferred by geraniin were comparable to metformin. Transcriptomic analysis revealed a profound influence of geraniin on the hepatic expression profiles. The lipid and steroid metabolic processes that were aberrantly activated by HFD were suppressed by geraniin. Based on the differential transcriptomes, geraniin also exerted a significant modulatory effect on the expression of mitochondrial genes, potentially influencing the mitochondrial activity and leading to the observed beneficial effects. CONCLUSION: Geraniin supplementation mitigated metabolic anomalies of MetS in rats, making it an attractive drug candidate for further investigation.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Syndrome , Animals , Diet, High-Fat/adverse effects , Glucosides , Hydrolyzable Tannins/pharmacology , Liver , Metabolic Syndrome/drug therapy , Metabolic Syndrome/etiology , Rats , Rats, Sprague-Dawley
2.
Int J Food Sci Nutr ; 71(8): 940-953, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32319838

ABSTRACT

In this study, the insulin-like and insulin sensitising effects of the ellagitannins geraniin, corilagin, ellagic acid, gallic acid and Nephelium lappaceum rind extract in 3T3-L1 adipocytes was investigated. It was observed that non-toxic concentrations of geraniin and its metabolites (0.2-20 µM) and N. lappaceum extract (0.2-20 µg/mL) exhibited insulin-like properties in the absence of insulin and insulin-sensitising properties in the presence of insulin particularly with regards to glucose uptake in 3T3-L1 adipocytes. The compounds were further able to promote adipocyte differentiation and may be involved in the inhibition of lipolysis in 3T3-L1 adipocytes in the presence of insulin. However further study into the molecular mechanisms of action of these compounds need to be carried out to better understand the potential of these compounds/extracts to act as therapeutic agents for hyperglycaemia associated with diabetes mellitus and obesity.


Subject(s)
Glucosides/pharmacology , Hydrolyzable Tannins/pharmacology , Plant Extracts/pharmacology , Sapindaceae/chemistry , 3T3-L1 Cells , Adipocytes/drug effects , Adipogenesis , Animals , Biological Transport/drug effects , Cell Differentiation/drug effects , Diabetes Mellitus, Type 2 , Fatty Acids, Nonesterified , Glucose/metabolism , Glucosides/chemistry , Hydrolyzable Tannins/chemistry , Hyperglycemia , Insulin , Lipolysis , Mice , Obesity
3.
J Food Biochem ; 43(2): e12717, 2019 02.
Article in English | MEDLINE | ID: mdl-31353646

ABSTRACT

The present study aimed to outline the physiological and metabolic disparity between chow- and purified ingredient-based high-fat diets and their efficacy in the induction of metabolic syndrome (MetS). Male, 3-week-old Sprague Dawley rats were randomly assigned to chow-based control diet, chow-based high-fat diet, purified control diet, and purified high-fat diet for 12 weeks. Physical and biochemical changes were documented. Chow-based diets, irrespective of the lipid content, resulted in significantly lower weight gain and organ weight compared to purified ingredient-based diets. Circulating insulin, total proteins, albumin, and certain lipid components like the triglycerides, total cholesterol, and high-density lipoprotein-cholesterol were also lower in the chow-based diet groups. Both chow- and purified high-fat diets induced central obesity, hypertension, and hyperglycaemia, but the latter was associated with earlier onset of the metabolic aberrations and additionally, dyslipidaemia. In conclusion, purified high-fat diet is a better diet for MetS induction in rats. PRACTICAL APPLICATIONS: Modeling metabolic syndrome is commonly accomplished with the use of chow- or purified ingredient diets enriched with carbohydrates and/or lipids, but the differences and associated drawbacks are unclear. This study highlights that chow- or modified chow-based diets have a tendency to introduce unwanted metabolic changes which are inconsistent with the progression of metabolic syndrome. Thus, the use of these diets in metabolic disease study should be avoided. On the other hand, purified high-fat diet which can effectively induce the features of metabolic syndrome is highly recommended.


Subject(s)
Animal Feed/analysis , Diet, High-Fat/adverse effects , Dietary Fats/analysis , Metabolic Syndrome/etiology , Animals , Cholesterol/blood , Dietary Fats/metabolism , Disease Models, Animal , Humans , Insulin/blood , Male , Metabolic Syndrome/metabolism , Rats , Rats, Sprague-Dawley , Triglycerides/blood
4.
J Adv Res ; 8(6): 743-752, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29062573

ABSTRACT

The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets) and two different developmental stages (post-weaning and young adult) on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively) Sprague Dawley rats were given control, high-fat (60% kcal), and high-fat-high-sucrose (60% kcal fat + 30% sucrose water) diets for eight weeks (n = 6 to 7 per group). Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR) α and γ in the liver and receptor for advanced glycation end products (RAGE) in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

5.
Nutrients ; 9(9)2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28880217

ABSTRACT

The clinical value of tocotrienols is increasingly appreciated because of the unique therapeutic effects that are not shared by tocopherols. However, their effect on metabolic syndrome is not well-established. This study aimed to investigate the effects of a tocotrienol-rich fraction (TRF) from palm oil in high-fat-diet-treated rats. Male, post-weaning Sprague Dawley rats were provided high-fat (60% kcal) diet for eight weeks followed by a TRF (60 mg/kg) treatment for another four weeks. Physical, metabolic, and histological changes were compared to those on control and high-fat diets respectively. High-fat feeding for eight weeks induced all hallmarks of metabolic syndrome. The TRF reversed systolic and diastolic hypertension, hypercholesterolemia, hepatic steatosis, impaired antioxidant defense, and myeloperoxidase hyperactivity triggered by the high-fat diet. It also conferred an inhibitory effect on protein glycation to reduce glycated hemoglobin A1c and advanced glycation end products (AGE). This was accompanied by the suppression of the receptor for advanced glycation end product (RAGE) expression in the liver. The treatment effects on visceral adiposity, glycemic control, triglyceride level, as well as peroxisome proliferator-activated receptor α and γ expression were negligible. To conclude, treatment with a TRF exhibited protective effects on the cardiovascular and liver health in addition to the amelioration of plasma redox imbalance and AGE-RAGE activation. Further investigation as a therapy for metabolic syndrome is therefore worthwhile.


Subject(s)
Diet, High-Fat/adverse effects , Glycation End Products, Advanced/metabolism , Hypertension/chemically induced , Receptor for Advanced Glycation End Products/metabolism , Tocotrienols/pharmacology , Adiposity , Animals , Body Composition , Eating , Energy Intake , Glucose Tolerance Test , Humans , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Weight Gain
6.
Nutrition ; 32(9): 995-1001, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27130470

ABSTRACT

OBJECTIVE: To investigate the effects of glycyrrhizic acid supplementation on glucose and lipid metabolism in rodents consuming a high-fat, high-sucrose diet. METHODS: Twenty-four male, 8-week old Sprague Dawley rats with an initial weight of 160 to 200 g were randomised into three groups (n = 6 for each group): groups A (standard rat chow), B (high-fat, high-sucrose diet), and C (high-fat, high-sucrose diet + 100 mg/kg/d of glycyrrhizic acid via oral administration). The rats were treated accordingly for 4 wk. Glycaemic parameters, lipid profile, stress hormones, and adiponectin levels were measured after the treatment. Relative gene expressions of peroxisome proliferator-activated receptor α and γ, lipoprotein lipase as well as gluconeogenic enzymatic activities in different tissues were also determined. RESULTS: Consumption of high-fat, high-sucrose diet triggered hyperglycaemia, insulin resistance, and dyslipidemia, which were effectively attenuated by supplementation with glycyrrhizic acid. Glycyrrhizic acid supplementation also effectively reduced circulating adrenaline, alleviated gluconeogenic enzymes overactivity, and promoted the upregulation of lipoprotein lipase expression in the cardiomyocytes and skeletal muscles. A high calorie diet also triggered hypoadiponectinaemia and suppression of peroxisome proliferator-activated receptor γ expression, which did not improve with glycyrrhizic acid treatment. CONCLUSION: Supplementation with glycyrrhizic acid could alleviate high calorie diet-induced glucose and lipid metabolic dysregulations by reducing circulatory stress hormones, normalizing gluconeogenic enzyme activities, and elevating muscular lipid uptake. The beneficial effects of these bioactivities outweighed the adverse effects caused by diet-induced repression of peroxisome proliferator-activated receptor γ expression, resulting in the maintenance of lipid and glucose homeostasis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diet, High-Fat/adverse effects , Glycyrrhizic Acid/pharmacology , Metabolic Syndrome/prevention & control , PPAR gamma/antagonists & inhibitors , Sucrose/administration & dosage , Adiponectin/blood , Animals , Anti-Inflammatory Agents/blood , Dietary Fats/administration & dosage , Epinephrine/blood , Gluconeogenesis/drug effects , Glycyrrhizic Acid/blood , Lipoprotein Lipase/blood , Lipoprotein Lipase/drug effects , Male , Metabolic Syndrome/blood , PPAR gamma/blood , Rats , Rats, Sprague-Dawley
7.
Article in English | MEDLINE | ID: mdl-26069530

ABSTRACT

Stress and high-calorie diets increase the risk of developing metabolic syndrome. Glycyrrhizic acid (GA) has been shown to improve dyslipidaemia in rats fed on a high-calorie diet. This study aimed to examine the effects of GA on lipid metabolism in rats exposed to short- or long-term stress and on a high-calorie diet. The parameters examined included serum lipid profiles, serum free fatty acids and fatty acid profiles in tissues, and expression of peroxisome proliferator-activated receptors (PPAR), lipoprotein lipase (LPL), elongases and desaturases. Within the 14- or 28-day exposure groups, neither stress nor GA affected the lipid profile and serum free fatty acids. Stress did not affect PPAR-α expression in both the 14- and 28-day exposure groups. However, GA-treated rats from the former group had increased PPAR-α expression only in the kidney while all other tissues from the latter group were unaffected. Stress increased PPAR-γ expression in the heart of the 28-day exposure group but its expression was unaffected in all tissues of the 14-day exposure group. GA elevated PPAR-γ expression in the kidney and the skeletal muscles. Neither stress nor GA affected LPL expressions in all tissues from the 14-day exposure group but its expressions were elevated in the QF of the stressed rats and heart of the GA-treated rats of the 28-day exposure group. As for the elongases and desaturases in the liver, stress down-regulated ELOVL5 in the long-term exposure group while up-regulated ELOVL6 in the short-term exposure group while hepatic desaturases were unaffected by stress. Neither elongase nor desaturase expressions in the liver were affected by GA. This research is the first report of GA on lipid metabolism under stress and high-calorie diet conditions and the results gives evidence for the role of GA in ameliorating MetS via site-specific regulation of lipid metabolism gene expressions and modification of fatty acids.

8.
Nutrients ; 6(11): 4856-71, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25375630

ABSTRACT

Glycyrrhizic acid (GA) ameliorates many components of the metabolic syndrome, but its potential therapeutic use is marred by edema caused by inhibition of renal 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2). We assessed whether 100 mg/kg per day GA administered orally could promote metabolic benefits without causing edema in rats fed on a high-sucrose diet. Groups of eight male rats were fed on one of three diets for 28 days: normal diet, a high-sucrose diet, or a high-sucrose diet supplemented with GA. Rats were then culled and renal 11ß-HSD2 activity, as well as serum sodium, potassium, angiotensin II and leptin levels were determined. Histological analyses were performed to assess changes in adipocyte size in visceral and subcutaneous depots, as well as hepatic and renal tissue morphology. This dosing paradigm of GA attenuated the increases in serum leptin levels and visceral, but not subcutaneous adipocyte size caused by the high-sucrose diet. Although GA decreased renal 11ß-HSD2 activity, it did not affect serum electrolyte or angiotensin II levels, indicating no onset of edema. Furthermore, there were no apparent morphological changes in the liver or kidney, indicating no toxicity. In conclusion, it is possible to reap metabolic benefits of GA without edema using the current dosage and treatment time.


Subject(s)
Dietary Sucrose/administration & dosage , Edema/chemically induced , Glycyrrhizic Acid/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 2/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Administration, Oral , Angiotensin II/blood , Animals , Dietary Sucrose/adverse effects , Kidney/drug effects , Kidney/enzymology , Leptin/blood , Liver/drug effects , Liver/metabolism , Male , Metabolic Syndrome/drug therapy , Potassium/blood , Rats , Rats, Sprague-Dawley , Sodium/blood
9.
Nat Prod Bioprospect ; 4(6): 325-33, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25369772

ABSTRACT

Beneficial effects of glycyrrhizic acid (GA), a bioactive extract of licorice root, in the prevention of metabolic syndrome have been consistently reported while advanced glycation end products (AGE) and receptor for advanced glycation end product (RAGE) are the leading factors in the development of diabetes mellitus. The aim of this study was to investigate the effects of GA on the AGE-RAGE axis using high-fat/high-sucrose (HF/HS) diet-induced metabolic syndrome rat models. Twenty four male Sprague-Dawley rats were randomly assigned into three groups for 4 weeks: (1) Group A, normal diet with standard rat chow; (2) Group B, HF/HS diet; (3) Group C, HF/HS diet and oral administration of 100 mg/kg GA per day. The results showed that HF/HS diet elevated the fasting blood glucose level and insulin resistance index which was prevented by GA supplementation. GA treatment significantly lowered the circulating AGE independent of its glucose-lowering effect. HF/HS diet also triggered RAGE upregulation in the abdominal muscles while GA administration downregulated RAGE expression in the abdominal muscles, aorta and subcutaneous adipose tissues. In conclusion, HF/HS diet could cause glucose intolerance, insulin resistance and upregulation of RAGE expression while GA ameliorated the metabolic dysregulation besides exhibiting inhibitory effects on the AGE-RAGE axis.

10.
Article in English | MEDLINE | ID: mdl-25755839

ABSTRACT

Stress and high-calorie diet increase the risk of developing metabolic syndrome. Glycyrrhizic acid (GA) has been shown to improve hyperglycaemia and dyslipidaemia under various physiological conditions. This study was aimed at examining the effects of stress and GA on glucose metabolism under short- or long-term stress. Forty-eight Sprague Dawley rats were divided into two groups with constant stress induced by light (300-400 lux) for either 14 days (short-term stress) or 28 days (long-term stress). Within each group, the rats were subdivided into three treatment groups i.e. Group A (control group): high-calorie diet (HCD) only; Group B: HCD + stress (14 or 28 days) and Group C: HCD + stress (14 or 28 days) + GA (100 mg/kg). The blood glucose concentrations of the rats exposed to 14-day stress were elevated significantly and GA lowered blood glucose concentration significantly in the 14-day exposure group. The 28-day exposure group adapted to stress as shown by the lower adrenaline level and gluconeogenic enzymes activities in most of the tissues than the 14-day exposure group. With regards to adrenaline and corticosterone, GA was found to increased adrenaline significantly in the short-term exposure group while lowering corticosterone in the long-term exposure group. GA-treated short- and long-term exposure groups had significant reduction in hexose-6-phosphate dehydrogenase activities in the visceral adipose tissues and quadriceps femoris respectively. The results may indicate the role of GA in improving blood glucose concentration in individuals exposed to short-term stress who are already on a high-calorie diet via selective action on gluconeogenic enzymes in different tissues.

11.
J Diabetes Res ; 2013: 190395, 2013.
Article in English | MEDLINE | ID: mdl-23671857

ABSTRACT

Chronic stress has been shown to have a strong link towards metabolic syndrome (MetS). Glycyrrhizic acid (GA) meanwhile has been shown to improve MetS symptoms caused by an unhealthy diet by inhibiting 11 ß -HSD 1. This experiment aimed to determine the effects of continuous, moderate-intensity stress on rats with and without GA intake on systolic blood pressure (SBP) across a 28-day period, as well as glucose metabolism, and 11 ß -HSD 1 and 2 activities at the end of the 28-day period. Adaptation to the stressor (as shown by SBP) resulted in no significant defects in glucose metabolism by the end of the experimental duration. However, a weakly significant increase in renal 11 ß -HSD 1 and a significant increase in subcutaneous adipose tissue 11 ß -HSD 1 activities were observed. GA intake did not elicit any significant benefit in glucose metabolism, indicating that the stress response may block its effects. However, GA-induced improvements in 11 ß -HSD activities in certain tissues were observed, although it is uncertain if these effects are manifested after adaptation due to the withdrawal of the stress response. Hence the ability of GA to improve stress-induced disturbances in the absence of adaptation needs to be investigated further.

12.
Eur J Pharmacol ; 677(1-3): 197-202, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22227336

ABSTRACT

The activities of phosphoenolpyruvate carboxykinase (PEPCK) are influenced by active glucocorticoids which are activated by 11-ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) while hexose-6-phosphate dehydrogenase (H6PDH) influences the activities of 11-ßHSD1 in a cofactor manner. Dysregulation of PEPCK and H6PDH has been associated with the pathogenesis of metabolic syndrome. Sixteen male Sprague Dawley rats, fed ad libitum, were assigned to two groups, control and treated, with the treated group being given GA at 100mg/kg for one week. Blood and subcutaneous and visceral adipose tissue, abdominal and quadriceps femoris muscle, liver and kidney were examined. GA treatment led to an overall significant decrease in blood glucose while HOMA-IR. PEPCK activities decreased in the liver but increased in the visceral adipose tissue. H6PDH activities also decreased significantly in the liver while 11ß-HSD1 activities decreased significantly in all studied tissues except for subcutaneous adipose tissue. Adipocytes in the subcutaneous and visceral depots showed a reduction in size. Though increased glycogen storage was seen in the liver, no changes were observed in the kidneys and muscles. Results from this study may imply that GA could counteract the development of type 2 diabetes mellitus by improving insulin sensitivity and probably by reduction of H6PDH, 11ß-HSD1 and a selective decrease in PEPCK activities.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Carbohydrate Dehydrogenases/metabolism , Gluconeogenesis/drug effects , Glucose/metabolism , Glycyrrhizic Acid/pharmacology , Homeostasis/drug effects , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Animals , Coenzymes/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Glucocorticoids/pharmacology , Kinetics , Male , Rats , Rats, Sprague-Dawley
13.
Lipids Health Dis ; 9: 81, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20670429

ABSTRACT

BACKGROUND: The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL), an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR). Glycyrrhizic acid (GA), a triterpenoid saponin, is the primary bioactive constituent of the roots of the shrub Glycyrrhiza glabra. Studies have indicated that triterpenoids could act as PPAR agonists and GA is therefore postulated to restore LPL expression in the insulin resistant state. RESULTS: Oral administration of 100 mg/kg of GA to high-fat diet-induced obese rats for 28 days led to significant reduction in blood glucose concentration and improvement in insulin sensitivity as indicated by the homeostasis model assessment of insulin resistance (HOMA-IR) (p < 0.05). LPL expression was up-regulated in the kidney, heart, quadriceps femoris, abdominal muscle and the visceral and subcutaneous adipose tissues but down-regulated in the liver--a condition in reverse to that seen in high-fat diet-induced obese rats without GA. With regard to lipid metabolism, GA administration led to significant hypotriglyceridemic and HDL-raising effects (p < 0.05), with a consistent reduction in serum free fatty acid, total cholesterol and LDL cholesterol and significant decrease in tissue lipid deposition across all studied tissue (p < 0.01). CONCLUSION: In conclusion, GA may be a potential compound in improving dyslipidaemia by selectively inducing LPL expression in non-hepatic tissues. Such up-regulation was accompanied by a GA-mediated improvement in insulin sensitivity, which may be associated with a decrease in tissue lipid deposition. The HDL-raising effect of GA suggests the antiatherosclerotic properties of GA.


Subject(s)
Glycyrrhizic Acid/therapeutic use , Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Lipid Metabolism/drug effects , Lipoprotein Lipase/metabolism , Metabolic Syndrome/drug therapy , Obesity/physiopathology , Animals , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Blood Glucose/analysis , Dietary Fats/adverse effects , Gene Expression Regulation, Enzymologic/drug effects , Glycyrrhizic Acid/pharmacology , Homeostasis/drug effects , Hyperlipidemias/blood , Hyperlipidemias/metabolism , Hypolipidemic Agents/pharmacology , Insulin Resistance , Lipids/blood , Male , Metabolic Syndrome/blood , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Obesity/blood , Obesity/metabolism , RNA, Messenger/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley
14.
Lipids Health Dis ; 8: 31, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-19638239

ABSTRACT

BACKGROUND: The metabolic syndrome (MetS) is a cluster of metabolic abnormalities comprising visceral obesity, dyslipidaemia and insulin resistance (IR). With the onset of IR, the expression of lipoprotein lipase (LPL), a key regulator of lipoprotein metabolism, is reduced. Increased activation of glucocorticoid receptors results in MetS symptoms and is thus speculated to have a role in the pathophysiology of the MetS. Glycyrrhizic acid (GA), the bioactive constituent of licorice roots (Glycyrrhiza glabra) inhibits 11beta-hydroxysteroid dehydrogenase type 1 that catalyzes the activation of glucocorticoids. Thus, oral administration of GA is postulated to ameliorate the MetS. RESULTS: In this study, daily oral administration of 50 mg/kg of GA for one week led to significant increase in LPL expression in the quadriceps femoris (p < 0.05) but non-significant increase in the abdominal muscle, kidney, liver, heart and the subcutaneous and visceral adipose tissues (p > 0.05) of the GA-treated rats compared to the control. Decrease in adipocyte size (p > 0.05) in both the visceral and subcutaneous adipose tissue depots accompanies such selective induction of LPL expression. Consistent improvement in serum lipid parameters was also observed, with decrease in serum free fatty acid, triacylglycerol, total cholesterol and LDL-cholesterol but elevated HDL-cholesterol (p > 0.05). Histological analysis using tissue lipid staining with Oil Red O showed significant decrease in lipid deposition in the abdominal muscle and quadriceps femoris (p < 0.05) but non-significant decrease in the heart, kidney and liver (p > 0.05). CONCLUSION: Results from this study may imply that GA could counteract the development of visceral obesity and improve dyslipidaemia via selective induction of tissue LPL expression and a positive shift in serum lipid parameters respectively, and retard the development of IR associated with tissue steatosis.


Subject(s)
Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Glycyrrhizic Acid/pharmacology , Lipid Metabolism/drug effects , Lipids/blood , Lipoprotein Lipase/genetics , Muscle, Skeletal/enzymology , 11-beta-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Adipose Tissue, White/cytology , Adipose Tissue, White/drug effects , Adipose Tissue, White/enzymology , Adipose Tissue, White/pathology , Animals , Blood Pressure/drug effects , Cell Size/drug effects , Enzyme Inhibitors/administration & dosage , Glycyrrhizic Acid/administration & dosage , Kidney/drug effects , Kidney/enzymology , Kidney/pathology , Lipoprotein Lipase/metabolism , Liver/drug effects , Liver/enzymology , Liver/pathology , Metabolic Syndrome/prevention & control , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Myocardium/enzymology , Myocardium/pathology , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...