Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Cyst Fibros ; 22(6): 1070-1079, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37422433

ABSTRACT

RATIONALE: Limited information is available on the clinical status of people with Cystic Fibrosis (pwCF) carrying 2 nonsense mutations (PTC/PTC). The main objective of this study was to compare disease severity between pwCF PTC/PTC, compound heterozygous for F508del and PTC (F508del/PTC) and homozygous for F508del (F508del+/+). METHODS: Based on the European CF Society Patient Registry clinical data of pwCF living in high and middle income European and neighboring countries, PTC/PTC (n = 657) were compared with F508del+/+ (n = 21,317) and F508del/PTC(n = 4254).CFTR mRNA and protein activity levels were assessed in primary human nasal epithelial (HNE) cells sampled from 22 PTC/PTC pwCF. MAIN RESULTS: As compared to F508del+/+ pwCF; both PTC/PTC and F508del/PTC pwCF exhibited a significantly faster rate of decline in Forced Expiratory Volume in 1 s (FEV1) from 7 years (-1.33 for F508del +/+, -1.59 for F508del/PTC; -1.65 for PTC/PTC, p < 0.001) until respectively 30 years (-1.05 for F508del +/+, -1.23 for PTC/PTC, p = 0.048) and 27 years (-1.12 for F508del +/+, -1.26 for F508del/PTC, p = 0.034). This resulted in lower FEV1 values in adulthood. Mortality of pediatric pwCF with one or two PTC alleles was significantly higher than their F508del homozygous pairs. Infection with Pseudomonas aeruginosa was more frequent in PTC/PTC versus F508del+/+ and F508del/PTC pwCF. CFTR activity in PTC/PTC pwCF's HNE cells ranged between 0% to 3% of the wild-type level. CONCLUSIONS: Nonsense mutations decrease the survival and accelerate the course of respiratory disease in children and adolescents with Cystic Fibrosis.


Subject(s)
Cystic Fibrosis , Adolescent , Humans , Child , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Codon, Nonsense , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Forced Expiratory Volume , RNA, Messenger , Mutation
2.
Cell Mol Life Sci ; 79(9): 503, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36045259

ABSTRACT

Early recognition and enhanced degradation of misfolded proteins by the endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) cause defective protein secretion and membrane targeting, as exemplified for Z-alpha-1-antitrypsin (Z-A1AT), responsible for alpha-1-antitrypsin deficiency (A1ATD) and F508del-CFTR (cystic fibrosis transmembrane conductance regulator) responsible for cystic fibrosis (CF). Prompted by our previous observation that decreasing Keratin 8 (K8) expression increased trafficking of F508del-CFTR to the plasma membrane, we investigated whether K8 impacts trafficking of soluble misfolded Z-A1AT protein. The subsequent goal of this study was to elucidate the mechanism underlying the K8-dependent regulation of protein trafficking, focusing on the ERAD pathway. The results show that diminishing K8 concentration in HeLa cells enhances secretion of both Z-A1AT and wild-type (WT) A1AT with a 13-fold and fourfold increase, respectively. K8 down-regulation triggers ER failure and cellular apoptosis when ER stress is jointly elicited by conditional expression of the µs heavy chains, as previously shown for Hrd1 knock-out. Simultaneous K8 silencing and Hrd1 knock-out did not show any synergistic effect, consistent with K8 acting in the Hrd1-governed ERAD step. Fractionation and co-immunoprecipitation experiments reveal that K8 is recruited to ERAD complexes containing Derlin2, Sel1 and Hrd1 proteins upon expression of Z/WT-A1AT and F508del-CFTR. Treatment of the cells with c407, a small molecule inhibiting K8 interaction, decreases K8 and Derlin2 recruitment to high-order ERAD complexes. This was associated with increased Z-A1AT secretion in both HeLa and Z-homozygous A1ATD patients' respiratory cells. Overall, we provide evidence that K8 acts as an ERAD modulator. It may play a scaffolding protein role for early-stage ERAD complexes, regulating Hrd1-governed retrotranslocation initiation/ubiquitination processes. Targeting K8-containing ERAD complexes is an attractive strategy for the pharmacotherapy of A1ATD.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Endoplasmic Reticulum-Associated Degradation , Keratin-8/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , HeLa Cells , Humans , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
Sci Rep ; 11(1): 6842, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767236

ABSTRACT

C407 is a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein carrying the p.Phe508del (F508del) mutation. We investigated the corrector effect of c407 and its derivatives on F508del-CFTR protein. Molecular docking and dynamics simulations combined with site-directed mutagenesis suggested that c407 stabilizes the F508del-Nucleotide Binding Domain 1 (NBD1) during the co-translational folding process by occupying the position of the p.Phe1068 side chain located at the fourth intracellular loop (ICL4). After CFTR domains assembly, c407 occupies the position of the missing p.Phe508 side chain. C407 alone or in combination with the F508del-CFTR corrector VX-809, increased CFTR activity in cell lines but not in primary respiratory cells carrying the F508del mutation. A structure-based approach resulted in the synthesis of an extended c407 analog G1, designed to improve the interaction with ICL4. G1 significantly increased CFTR activity and response to VX-809 in primary nasal cells of F508del homozygous patients. Our data demonstrate that in-silico optimized c407 derivative G1 acts by a mechanism different from the reference VX-809 corrector and provide insights into its possible molecular mode of action. These results pave the way for novel strategies aiming to optimize the flawed ICL4-NBD1 interface.


Subject(s)
Bronchi/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Homozygote , Nasal Cavity/drug effects , Phosphinic Acids/chemistry , Phosphinic Acids/pharmacology , Bronchi/metabolism , Bronchi/pathology , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Humans , Molecular Docking Simulation , Mutation , Nasal Cavity/metabolism , Nasal Cavity/pathology
5.
Animal Model Exp Med ; 2(4): 297-311, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31942562

ABSTRACT

BACKGROUND: Genetically engineered animals are essential for gaining a proper understanding of the disease mechanisms of cystic fibrosis (CF). The rat is a relevant laboratory model for CF because of its zootechnical capacity, size, and airway characteristics, including the presence of submucosal glands. METHODS: We describe the generation of a CF rat model (F508del) homozygous for the p.Phe508del mutation in the transmembrane conductance regulator (Cftr) gene. This model was compared to new Cftr -/- rats (CFTR KO). Target organs in CF were examined by histological staining of tissue sections and tooth enamel was quantified by micro-computed tomography. The activity of CFTR was evaluated by nasal potential difference (NPD) and short-circuit current measurements. The effect of VX-809 and VX-770 was analyzed on nasal epithelial primary cell cultures from F508del rats. RESULTS: Both newborn F508del and Knock out (KO) animals developed intestinal obstruction that could be partly compensated by special diet combined with an osmotic laxative. The two rat models exhibited CF phenotypic anomalies such as vas deferens agenesis and tooth enamel defects. Histology of the intestine, pancreas, liver, and lungs was normal. Absence of CFTR function in KO rats was confirmed ex vivo by short-circuit current measurements on colon mucosae and in vivo by NPD, whereas residual CFTR activity was observed in F508del rats. Exposure of F508del CFTR nasal primary cultures to a combination of VX-809 and VX-770 improved CFTR-mediated Cl- transport. CONCLUSIONS: The F508del rats reproduce the phenotypes observed in CFTR KO animals and represent a novel resource to advance the development of CF therapeutics.

6.
ERJ Open Res ; 4(1)2018 Jan.
Article in English | MEDLINE | ID: mdl-29497617

ABSTRACT

Premature termination codons (PTCs) are generally associated with severe forms of genetic diseases. Readthrough of in-frame PTCs using small molecules is a promising therapeutic approach. Nonetheless, the outcome of preclinical studies has been low and variable. Treatment efficacy depends on: 1) the level of drug-induced readthrough, 2) the amount of target transcripts, and 3) the activity of the recoded protein. The aim of the present study was to identify, in the cystic fibrosis transmembrane conductance regulator (CFTR) model, recoded channels from readthrough therapy that may be enhanced using CFTR modulators. First, drug-induced readthrough of 15 PTCs was measured using a dual reporter system under basal conditions and in response to gentamicin and negamycin. Secondly, exon skipping associated with these PTCs was evaluated with a minigene system. Finally, incorporated amino acids were identified by mass spectrometry and the function of the predicted recoded CFTR channels corresponding to these 15 PTCs was measured. Nonfunctional channels were subjected to CFTR-directed ivacaftor-lumacaftor treatments. The results demonstrated that CFTR modulators increased activity of recoded channels, which could also be confirmed in cells derived from a patient. In conclusion, this work will provide a framework to adapt treatments to the patient's genotype by identifying the most efficient molecule for each PTC and the recoded channels needing co-therapies to rescue channel function.

7.
Hum Mol Genet ; 25(7): 1281-93, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26769674

ABSTRACT

Patients with cystic fibrosis (CF) display low bone mass and alterations in bone formation. Mice carrying the F508del genetic mutation in the cystic fibrosis conductance regulator (Cftr) gene display reduced bone formation and decreased bone mass. However, the underlying molecular mechanisms leading to these skeletal defects are unknown, which precludes the development of an efficient anti-osteoporotic therapeutic strategy. Here we report a key role for the intermediate filament protein keratin 8 (Krt8), in the osteoblast dysfunctions in F508del-Cftr mice. We found that murine and human osteoblasts express Cftr and Krt8 at low levels. Genetic studies showed that Krt8 deletion (Krt8(-/-)) in F508del-Cftr mice increased the levels of circulating markers of bone formation, corrected the expression of osteoblast phenotypic genes, promoted trabecular bone formation and improved bone mass and microarchitecture. Mechanistically, Krt8 deletion in F508del-Cftr mice corrected overactive NF-κB signaling and decreased Wnt-ß-catenin signaling induced by the F508del-Cftr mutation in osteoblasts. In vitro, treatment with compound 407, which specifically disrupts the Krt8-F508del-Cftr interaction in epithelial cells, corrected the abnormal NF-κB and Wnt-ß-catenin signaling and the altered phenotypic gene expression in F508del-Cftr osteoblasts. In vivo, short-term treatment with 407 corrected the altered Wnt-ß-catenin signaling and bone formation in F508del-Cftr mice. Collectively, the results show that genetic or pharmacologic targeting of Krt8 leads to correction of osteoblast dysfunctions, altered bone formation and osteopenia in F508del-Cftr mice, providing a therapeutic strategy targeting the Krt8-F508del-CFTR interaction to correct the abnormal bone formation and bone loss in cystic fibrosis.


Subject(s)
Bone Diseases, Metabolic/etiology , Cystic Fibrosis/complications , Gene Deletion , Keratin-8/genetics , Osteogenesis , Animals , Bone Diseases, Metabolic/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/physiopathology , Disease Models, Animal , Female , Humans , Male , Mice , NF-kappa B , Osteoblasts/metabolism , Signal Transduction , Young Adult , beta Catenin
8.
F1000Res ; 4: 218, 2015.
Article in English | MEDLINE | ID: mdl-26594334

ABSTRACT

Cystic fibrosis (CF) is a multifactorial disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene ( CFTR), which encodes a cAMP-dependent Cl (-) channel. The most frequent mutation, F508del, leads to the synthesis of a prematurely degraded, otherwise partially functional protein. CFTR is expressed in many epithelia, with major consequences in the airways of patients with CF, characterized by both fluid transport abnormalities and persistent inflammatory responses. The relationship between the acute phase of inflammation and the expression of wild type (WT) CFTR or F508del-CFTR is poorly understood. The aim of the present study was to investigate this effect. The results show that 10 min exposure to TNF-alpha (0.5-50ng/ml) of F508del-CFTR-transfected HeLa cells and human bronchial cells expressing F508del-CFTR in primary culture (HBE) leads to the maturation of F508del-CFTR and induces CFTR chloride currents. The enhanced CFTR expression and function upon TNFα is sustained, in HBE cells, for at least 24 h. The underlying mechanism of action involves a protein kinase C (PKC) signaling pathway, and occurs through insertion of vesicles containing F508del-CFTR to the plasma membrane, with TNFα behaving as a corrector molecule. In conclusion, a novel and unexpected action of TNFα has been discovered and points to the importance of systematic studies on the roles of inflammatory mediators in the maturation of abnormally folded proteins in general and in the context of CF in particular.

9.
J Proteome Res ; 14(1): 567-77, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25365230

ABSTRACT

Cystinuria is a purely renal, rare genetic disease caused by mutations in cystine transporter genes and characterized by defective cystine reabsorption leading to kidney stones. In 14% of cases, patients undergo nephrectomy, but given the difficulty to predict the evolution of the disease, the identification of markers of kidney damage would improve the follow-up of patients with a higher risk. The aim of the present study is to develop a robust, reproducible, and noninvasive methodology for proteomic analysis of urinary exosomes using high resolution mass spectrometry. A clinical pilot study conducted on eight cystinuria patients versus 10 controls highlighted 165 proteins, of which 38 were up-regulated, that separate cystinuria patients from controls and further discriminate between severe and moderate forms of the disease. These proteins include markers of kidney injury, circulating proteins, and a neutrophil signature. Analysis of selected proteins by immunobloting, performed on six additional cystinuria patients, validated the mass spectrometry data. To our knowledge, this is the first successful proteomic study in cystinuria unmasking the potential role of inflammation in this disease. The workflow we have developed is applicable to investigate urinary exosomes in different renal diseases and to search for diagnostic/prognostic markers. Data are available via ProteomeXchange with identifier PXD001430.


Subject(s)
Biomarkers/metabolism , Cystinuria/metabolism , Exosomes/metabolism , Gene Expression Regulation/genetics , Proteomics/methods , Chromatography, High Pressure Liquid , Computational Biology , Electrophoresis, Polyacrylamide Gel , Female , Humans , Immunoblotting , Isoelectric Focusing , Male , Microscopy, Immunoelectron , Pilot Projects , Silver Staining , Tandem Mass Spectrometry/methods
10.
EMBO Mol Med ; 5(10): 1484-501, 2013 10.
Article in English | MEDLINE | ID: mdl-23982976

ABSTRACT

The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delivery to the plasma membrane. Based on this assumption we applied structure-based virtual screening to identify new low-molecular-weight compounds that should bind to ΔF508-NBD1 and act as protein-protein interaction inhibitors. Using different functional assays for CFTR activity, we demonstrated that in silico-selected compounds induced functional expression of ΔF508-CFTR in transfected HeLa cells, human bronchial CF cells in primary culture, and in the nasal epithelium of homozygous ΔF508-CFTR mice. The proposed compounds disrupt keratin8-ΔF508-CFTR interaction in ΔF508-CFTR HeLa cells. Structural analysis of ΔF508-NBD1 in the presence of these compounds suggests their binding to NBD1. We conclude that our strategy leads to the discovery of new compounds that are among the most potent correctors of ΔF508-CFTR trafficking defect known to date.


Subject(s)
Bronchi/cytology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Small Molecule Libraries/metabolism , Animals , Binding Sites , Bronchi/drug effects , Bronchi/physiology , Cells, Cultured , Chloride Channels/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Evaluation, Preclinical , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/physiology , HeLa Cells , Homozygote , Humans , Keratin-8/chemistry , Keratin-8/metabolism , Mice , Patch-Clamp Techniques , Protein Binding , Protein Interaction Maps/drug effects , Protein Structure, Tertiary , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
11.
J Immunol ; 182(11): 7254-63, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19454722

ABSTRACT

Because neutrophil apoptosis plays a key role in resolving inflammation, identification of proteins regulating neutrophil survival should provide new strategies to modulate inflammation. Using a proteomic approach, coronin-1 was identified as a cytosolic protein cleaved during neutrophil apoptosis. Coronin-1 is an actin-binding protein that can associate with phagosomes and NADPH oxidase, but its involvement in apoptosis was currently unknown. In coronin-1-transfected PLB985 cells, coronin-1 overexpression did not modify the kinetics of granulocyte differentiation as assessed by CD11b labeling. Concerning apoptosis, increased coronin-1 expression in dimethylformamide-differentiated PLB985 significantly decreased gliotoxin-induced mitochondrial depolarization as compared with controls. Likewise, coronin-1 significantly decreased TRAIL-induced apoptosis with less mitochondrial depolarization, caspase-3 and caspase-9 activities, but not caspase-8 or Bid truncation suggesting that coronin-1 interfered with mitochondria-related events. To validate the prosurvival role of coronin-1 in a pathophysiological condition involving neutrophil-dominated inflammation, neutrophils from cystic fibrosis (CF) patients were studied. Circulating neutrophils from CF patients had more coronin-1 expression assessed by immunoblotting or proteomic analysis of cytosolic proteins. This was associated with a lower apoptosis rate than those from controls evidenced by delayed phosphatidylserine externalization and mitochondria depolarization. In addition, inflammatory neutrophils from CF patients lungs showed an intense coronin-1 immunolabeling. We concluded that coronin-1 could constitute a potential target in resolving inflammation.


Subject(s)
Apoptosis , Microfilament Proteins/analysis , Neutrophils/cytology , Cell Survival , Cystic Fibrosis/pathology , Cytosol/chemistry , Humans , Hydrolysis , Inflammation , Microfilament Proteins/metabolism , Microfilament Proteins/physiology , Mitochondria/physiology , Neutrophils/pathology , Proteomics
12.
Mol Cell Proteomics ; 4(11): 1762-75, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16099848

ABSTRACT

Cystic fibrosis (CF) is a frequent autosomal recessive disorder caused by mutation of a gene encoding a multifunctional transmembrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), located in the apical membrane of epithelial cells lining exocrine glands. In an attempt to get a more complete picture of the pleiotropic effects of the CFTR defect on epithelial cells and particularly on the membrane compartment, a bidimensional blue native (BN)/SDS-PAGE-based proteomic approach was used on colonic crypt samples from control and CFTR knock-out mice (cftr-/-). This approach overcomes the difficulties of membrane protein analysis by conventional two-dimensional PAGE and is able to resolve multiprotein complexes. Used here for the first time on crude membrane proteins that were extracted from murine colonic crypts, BN/SDS-PAGE allows effective separation of protein species and complexes of various origins, including mitochondria, plasma membrane, and intracellular compartments. The major statistically significant difference in protein maps obtained with samples from control and cftr-/- mice was unambiguously identified as mClCA3, a member of a family of calcium-activated chloride channels considered to be key molecules in mucus secretion by goblet cells. On the basis of this finding, we evaluated the overall expression and localization of mClCA3 in the colonic epithelium and in the lung of mice by immunoblot analysis and immunohistochemistry. We found that mClCA3 expression was significantly decreased in the colon and lung of the cftr-/- mice. In an ex vivo assay, we found that the Ca2+-dependent (carbachol-stimulated) glycoprotein secretion strongly inhibited by the calcium-activated chloride channel blocker niflumic acid (100 microm) was impaired in the distal colon of cftr-/- mice. These results support the conclusion that a ClCA-related function in the CF colon depends on CFTR expression and may be correlated with the impaired expression of mClCA3.


Subject(s)
Chloride Channels/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Mucoproteins/metabolism , Amino Acid Sequence , Animals , Carbachol/pharmacology , Chloride Channels/analysis , Chloride Channels/chemistry , Colon/cytology , Colon/metabolism , Colon/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Electrophoresis, Polyacrylamide Gel , Glycoproteins/metabolism , Lung/metabolism , Lung/pathology , Male , Membrane Proteins/analysis , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Mucoproteins/analysis , Mucoproteins/chemistry , Niflumic Acid/pharmacology , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staining and Labeling , Time Factors
13.
Mol Cell Proteomics ; 4(10): 1591-601, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16014420

ABSTRACT

Cystic fibrosis is a fatal human genetic disease caused by mutations in the CFTR gene encoding a cAMP-activated chloride channel. It is characterized by abnormal fluid transport across secretory epithelia and chronic inflammation in lung, pancreas, and intestine. Because cystic fibrosis (CF) pathophysiology cannot be explained solely by dysfunction of cystic fibrosis transmembrane conductance regulator (CFTR), we applied a proteomic approach (bidimensional electrophoresis and mass spectrometry) to search for differentially expressed proteins between mice lacking cftr (cftr(tm1Unc), cftr-/-) and controls using colonic crypts from young animals, i.e. prior to the development of intestinal inflammation. By analyzing total proteins separated in the range of pH 6-11, we detected 24 differentially expressed proteins (>2-fold). In this work, we focused on one of these proteins that was absent in two-dimensional gels from cftr-/- mice. This protein spot (molecular mass, 37 kDa; pI 7) was identified by mass spectrometry as annexin A1, an anti-inflammatory protein. Interestingly, annexin A1 was also undetectable in lungs and pancreas of cftr-/- mice, tissues known to express CFTR. Absence of this inhibitory mediator of the host inflammatory response was associated with colonic up-regulation of the proinflammatory cytosolic phospholipase A2. More importantly, annexin A1 was down-regulated in nasal epithelial cells from CF patients bearing homozygous nonsense mutations in the CFTR gene (Y122X, 489delC) and differentially expressed in F508del patients. These results suggest that annexin A1 may be a key protein involved in CF pathogenesis especially in relation to the not well defined field of inflammation in CF. We suggest that decreased expression of annexin A1 contributes to the worsening of the CF phenotype.


Subject(s)
Annexin A1/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Cystic Fibrosis/metabolism , Down-Regulation/genetics , Adolescent , Adult , Amino Acid Sequence , Animals , Annexin A1/chemistry , Case-Control Studies , Child , Child, Preschool , Codon, Nonsense/genetics , Colon/cytology , Colon/metabolism , Colon/pathology , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Electrophoresis, Gel, Two-Dimensional , Homozygote , Humans , Lung/cytology , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , Molecular Sequence Data , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Nasal Mucosa/cytology , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Pancreas/cytology , Pancreas/metabolism , Pancreas/pathology , Protein Transport , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
Proteomics ; 4(12): 3833-44, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15529338

ABSTRACT

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF gene (cftr). Physiologically, CF is characterized by an abnormal chloride secretion in epithelia due to a dysfunction of a mutated cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a cAMP-dependent chloride channel whose most frequent mutation, deltaF508, leads to an aberrantly folded protein which causes a dysfunction of the channel. However, a growing number of reports suggest that modifier genes and environmental factors are involved in the physiology of CF. To identify proteins whose expression depends on wild-type WT-CFTR or deltaF508-CFTR, we chose a global proteomic approach based on the use of two-dimensional gel electrophoresis (2-DE) and mass spectrometry. The experiments were carried out with HeLa cells stably transfected with WT-CFTR (pTCFWT) or deltaF508-CFTR (pTCFdeltaF508). These experiments unmasked keratin 8 (K8) and 18 (K18) which were differentially expressed in pTCFWT vs. pTCFdeltaF508. An immunoblot of K18 confirmed the 2-DE results. Intracellular localization experiments of WT-CFTR, deltaF508-CFTR, K8, and K18 suggest that the expression of these proteins are linked, and that the concentrations of K8 and K18 and/or their distribution may be involved in the traffic of WT-CFTR/deltaF508-CFTR. A functional assay for CFTR revealed that specifically lowering K18 expression or changing its distribution leads to the delivery of functional deltaF508-CFTR to the plasma membrane. This work suggests a novel function of K18 in CF.


Subject(s)
Cell Membrane/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Keratins/metabolism , Proteomics/methods , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , HeLa Cells , Humans , Image Processing, Computer-Assisted , Immunoblotting , Immunohistochemistry , Immunoprecipitation , Isoelectric Focusing , Keratin-18 , Keratin-8 , Mass Spectrometry/methods , Microscopy, Fluorescence , Mutation , Protein Transport , Quinolinium Compounds/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Temperature , Time Factors , Transfection
15.
Am J Physiol Cell Physiol ; 284(3): C620-6, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12556359

ABSTRACT

We have previously shown that ouabain, which changes the electrochemical properties of cell membranes by inhibiting Na(+),K(+)-ATPase, induces the expression of multidrug resistance (MDR-1) gene in several human cell lines. Because the expressions of the MDR-1 and CFTR (which encodes the cAMP-activated Cl(-) channel associated with cystic fibrosis) genes are physiologically regulated in opposing directions, we wanted to determine whether ouabain also decreases CFTR transcripts and subsequently to analyze its mechanism of action. We found that the submicromolar concentrations of ouabain that increase MDR-1 mRNAs decrease the CFTR transcripts with analogous time-dependency in human pulmonary Calu-3 cells. By altering or reproducing the ouabain-induced changes in intracellular ionic activities (decreasing in external Na(+) or K(+) or using Na(+) ionophore), we show that the ouabain-induced regulations of both CFTR and MDR-1 transcripts depend on the Na(+)/K(+) pump inhibition but that the decrease in CFTR mRNAs also proceeds from cytoplasm reactions simultaneously activated by ouabain. These data, which emphasize the complex mechanism of action of ouabain, suggest that changes in intracellular ionic activities modulate CFTR/MDR-1 gene expressions.


Subject(s)
Cell Membrane/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Gene Expression Regulation/genetics , Ouabain/pharmacology , Respiratory Mucosa/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Cell Membrane/drug effects , Cells, Cultured , Choline/pharmacology , Digoxin/pharmacology , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Ion Pumps/drug effects , Ion Pumps/genetics , Ion Transport/drug effects , Ion Transport/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Protein Synthesis Inhibitors/pharmacology , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Respiratory Mucosa/drug effects , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism
16.
J Biol Chem ; 277(8): 6044-50, 2002 Feb 22.
Article in English | MEDLINE | ID: mdl-11744714

ABSTRACT

The HIV-1 envelope glycoprotein gp120/160 has pleiotropic effects on T cell function. We investigated whether Ca(2+) signaling, a crucial step for T cell activation, was altered by prolonged exposure of Jurkat T cells to gp160. Microfluorometric measurements showed that Jurkat cells incubated with gp160 had smaller (approximately 40%) increases in [Ca(2+)](i) in response to phytohemagglutinin and had a reduced Ca(2+) influx (approximately 25%). gp160 had similar effects on Jurkat cells challenged with thapsigargin. We used the patch clamp technique to record the Ca(2+) current, which is responsible for Ca(2+) influx and has properties of the calcium release-activated Ca(2+) current (I(CRAC)). gp160 reduced I(CRAC) by approximately 40%. The inhibitory effects of gp160 were antagonized by staurosporine (0.1 microm), an inhibitor of protein-tyrosine kinases and protein kinase Cs (PKCs), and by Gö 6976 (5 microm), an inhibitor acting especially on PKC alpha and PKC beta I. 12-O-Tetradecanoyl phorbol 13-acetate (16 nm), a PKC activator, reproduced the effects of gp160 in untreated cells. A Western blotting analysis of PKC isoforms alpha, beta I, delta, and zeta showed that only the cellular distribution of PKC alpha and -beta I were significantly modified by gp160. In addition, gp160 was able to modify the subcellular distribution of PKC alpha and PKC beta I caused by phytohemagglutinin. Therefore the reduction in I(CRAC) caused by prolonged incubation with gp160 is probably mediated by PKC alpha or -beta I.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , HIV Envelope Protein gp160/pharmacology , HIV-1/physiology , Calcium Signaling/drug effects , Humans , Isoenzymes/metabolism , Jurkat Cells , Kinetics , Membrane Potentials/drug effects , Membrane Potentials/physiology , Phytohemagglutinins/pharmacology , Protein Kinase C/metabolism , Protein Kinase C beta , Protein Kinase C-alpha , T-Lymphocytes , Tetradecanoylphorbol Acetate/pharmacology , Thapsigargin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...