Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(22): 15094-15114, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37930268

ABSTRACT

OATP1C1 (organic anion-transporting polypeptide 1C1) transports thyroid hormones, particularly thyroxine (T4), into human astrocytes. In this study, we investigated the potential of utilizing OATP1C1 to improve the delivery of anti-inflammatory drugs into glial cells. We designed and synthesized eight novel prodrugs by incorporating T4 and 3,5-diiodo-l-tyrosine (DIT) as promoieties to selected anti-inflammatory drugs. The prodrug uptake in OATP1C1-expressing human U-87MG glioma cells demonstrated higher accumulation with T4 promoiety compared to those with DIT promoiety or the parent drugs themselves. In silico models of OATP1C1 suggested dynamic binding for the prodrugs, wherein the pose changed from vertical to horizontal. The predicted binding energies correlated with the transport profiles, with T4 derivatives exhibiting higher binding energies when compared to prodrugs with a DIT promoiety. Interestingly, the prodrugs also showed utilization of oatp1a4/1a5/1a6 in mouse primary astrocytes, which was further supported by docking studies and a great potential for improved brain drug delivery.


Subject(s)
Organic Anion Transporters , Prodrugs , Animals , Mice , Humans , Thyroxine/pharmacology , Prodrugs/pharmacology , Organic Anion Transporters/metabolism , Astrocytes/metabolism , Peptides/metabolism , Anti-Inflammatory Agents , Anions/metabolism
2.
Pharmaceutics ; 15(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37111745

ABSTRACT

Inhibition of ABC transporters is a promising approach to overcome multidrug resistance in cancer. Herein, we report the characterization of a potent ABCG2 inhibitor, namely, chromone 4a (C4a). Molecular docking and in vitro assays using ABCG2 and P-glycoprotein (P-gp) expressing membrane vesicles of insect cells revealed that C4a interacts with both transporters, while showing selectivity toward ABCG2 using cell-based transport assays. C4a inhibited the ABCG2-mediated efflux of different substrates and molecular dynamic simulations demonstrated that C4a binds in the Ko143-binding pocket. Liposomes and extracellular vesicles (EVs) of Giardia intestinalis and human blood were used to successfully bypass the poor water solubility and delivery of C4a as assessed by inhibition of the ABCG2 function. Human blood EVs also promoted delivery of the well-known P-gp inhibitor, elacridar. Here, for the first time, we demonstrated the potential use of plasma circulating EVs for drug delivery of hydrophobic drugs targeting membrane proteins.

3.
Molecules ; 27(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36500622

ABSTRACT

To better understand the functionality of organic anion transporting polypeptides (OATPs) and to design new ligands, reliable structural data of each OATP is needed. In this work, we used a combination of homology model with molecular dynamics simulations to generate a comprehensive structural dataset, that encompasses a diverse set of OATPs but also their relevant conformations. Our OATP models share a conserved transmembrane helix folding harbouring a druggable binding pocket in the shape of an inner pore. Our simulations suggest that the conserved salt bridges at the extracellular region between residues on TM1 and TM7 might influence the entrance of substrates. Interactions between residues on TM1 and TM4 within OATP1 family shown their importance in transport of substrates. Additionally, in transmembrane (TM) 1/2, a known conserved element, interact with two identified motifs in the TM7 and TM11. Our simulations suggest that TM1/2-TM7 interaction influence the inner pocket accessibility, while TM1/2-TM11 salt bridges control the substrate binding stability.


Subject(s)
Organic Anion Transporters , Organic Anion Transporters/metabolism , Biological Transport
4.
J Biomol Struct Dyn ; 40(22): 12347-12357, 2022.
Article in English | MEDLINE | ID: mdl-34516349

ABSTRACT

SARS-CoV-2's main protease (Mpro) interaction with ligands has been explored with a myriad of crystal structures, most of the monomers. Nonetheless, Mpro is known to be active as a dimer but the relevance of the dimerization in the ligand-induced conformational changes has not been fully elucidated. We systematically simulated different Mpro-ligand complexes aiming to study their conformational changes and interactions, through molecular dynamics (MD). We focused on covalently bound ligands (N1 and N3, ∼9 µs per system both monomers and dimers) and compared these trajectories against the apostructure. Our results suggest that the monomeric simulations led to an unrealistically flexible active site. In contrast, the Mpro dimer displayed a stable oxyanion-loop conformation along the trajectory. Also, ligand interactions with residues His41, Gly143, His163, Glu166 and Gln189 are postulated to impact the ligands' inhibitory activity significantly. In dimeric simulations, especially Gly143 and His163 have increased interaction frequencies. In conclusion, long-timescale MD is a more suitable tool for exploring in silico the activity of bioactive compounds that potentially inhibit the dimeric form of SARS-CoV-2 Mpro.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ligands , Dimerization , Molecular Docking Simulation , Protease Inhibitors , Molecular Dynamics Simulation
5.
Mol Syst Biol ; 17(11): e10396, 2021 11.
Article in English | MEDLINE | ID: mdl-34709727

ABSTRACT

Treatment options for COVID-19, caused by SARS-CoV-2, remain limited. Understanding viral pathogenesis at the molecular level is critical to develop effective therapy. Some recent studies have explored SARS-CoV-2-host interactomes and provided great resources for understanding viral replication. However, host proteins that functionally associate with SARS-CoV-2 are localized in the corresponding subnetwork within the comprehensive human interactome. Therefore, constructing a downstream network including all potential viral receptors, host cell proteases, and cofactors is necessary and should be used as an additional criterion for the validation of critical host machineries used for viral processing. This study applied both affinity purification mass spectrometry (AP-MS) and the complementary proximity-based labeling MS method (BioID-MS) on 29 viral ORFs and 18 host proteins with potential roles in viral replication to map the interactions relevant to viral processing. The analysis yields a list of 693 hub proteins sharing interactions with both viral baits and host baits and revealed their biological significance for SARS-CoV-2. Those hub proteins then served as a rational resource for drug repurposing via a virtual screening approach. The overall process resulted in the suggested repurposing of 59 compounds for 15 protein targets. Furthermore, antiviral effects of some candidate drugs were observed in vitro validation using image-based drug screen with infectious SARS-CoV-2. In addition, our results suggest that the antiviral activity of methotrexate could be associated with its inhibitory effect on specific protein-protein interactions.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Discovery , Host-Pathogen Interactions/drug effects , Proteome/drug effects , SARS-CoV-2/physiology , COVID-19/virology , Drug Repositioning , Humans , Mass Spectrometry , Methotrexate/pharmacology , Proteomics , Virus Replication/drug effects
6.
Molecules ; 26(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34577133

ABSTRACT

In this study, we investigated the delivery of synthetic neurosteroids into MCF-7 human breast adenocarcinoma cells via Organic Anionic Transporting Polypeptides (OATPs) (pH 7.4 and 5.5) to identify the structural components required for OATP-mediated cellular uptake and to get insight into brain drug delivery. Then, we identified structure-uptake relationships using in-house developed OATP1A2 homology model to predict binding sites and modes for the ligands. These binding modes were studied by molecular dynamics simulations to rationalize the experimental results. Our results show that carboxylic acid needs to be at least at 3 carbon-carbon bonds distance from amide bond at the C-3 position of the androstane skeleton and have an amino group to avoid efflux transport. Replacement of hydroxyl group at C-3 with any of the 3, 4, and 5-carbon chained terminal carboxylic groups improved the affinity. We attribute this to polar interactions between carboxylic acid and side-chains of Lys33 and Arg556. The additional amine group showed interactions with Glu172 and Glu200. Based on transporter capacities and efficacies, it could be speculated that the functionalization of acetyl group at the C-17 position of the steroidal skeleton might be explored further to enable OAT1A2-mediated delivery of neurosteroids into the cells and also across the blood-brain barrier.


Subject(s)
Neurosteroids , Organic Anion Transporters , Biological Transport , Blood-Brain Barrier/metabolism
7.
ChemMedChem ; 16(17): 2686-2694, 2021 09 06.
Article in English | MEDLINE | ID: mdl-33844464

ABSTRACT

Multidrug resistance (MDR) is one of the major factors in the failure of many chemotherapy approaches. In cancer cells, MDR is mainly associated with the expression of ABC transporters such as P-glycoprotein, MRP1 and ABCG2. Despite major efforts to develop new selective and potent inhibitors of ABC drug transporters, no ABCG2-specific inhibitors for clinical use are yet available. Here, we report the evaluation of sixteen tetrahydroquinoline/4,5-dihydroisoxazole derivatives as a new class of ABCG2 inhibitors. The affinity of the five best inhibitors was further investigated by the vanadate-sensitive ATPase assay. Molecular modelling data, proposing a potential binding mode, suggest that they can inhibit the ABCG2 activity by binding on site S1, previously reported as inhibitors binding region, as well targeting site S2, a selective region for substrates, and by specifically interacting with residues Asn436, Gln398, and Leu555. Altogether, this study provided new insights into THQ/4,5-dihydroisoxazole molecular hybrids, generating great potential for the development of novel most potent ABCG2 inhibitors.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Isoxazoles/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Quinolines/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Female , Humans , Isoxazoles/chemistry , Models, Molecular , Molecular Structure , Neoplasm Proteins/metabolism , Quinolines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...