Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888973

ABSTRACT

We report that diazepam binding inhibitor (DBI) is a glial messenger mediating satellite glia-sensory neuron crosstalk in the dorsal root ganglion (DRG). DBI is highly expressed in satellite glia cells (SGCs) of mice, rat and human, but not in sensory neurons or most other DRG-resident cells. Knockdown of DBI results in a robust mechanical hypersensitivity without major effects on other sensory modalities. In vivo overexpression of DBI in SGCs reduces sensitivity to mechanical stimulation and alleviates mechanical allodynia in neuropathic and inflammatory pain models. We further show that DBI acts as an unconventional agonist and positive allosteric modulator at the neuronal GABAA receptors, particularly strongly effecting those with a high-affinity benzodiazepine binding site. Such receptors are selectively expressed by a subpopulation of mechanosensitive DRG neurons and these are also more enwrapped with DBI-expressing glia, as compared to other DRG neurons, suggesting a mechanism for specific effect of DBI on mechanosensation. These findings identified a new, peripheral neuron-glia communication mechanism modulating pain signalling, which can be targeted therapeutically.

2.
J Clin Invest ; 134(9)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530364

ABSTRACT

G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.


Subject(s)
Docosahexaenoic Acids , Ganglia, Spinal , Neuroglia , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Humans , Male , Mice , Ganglia, Spinal/metabolism , Homeostasis , Mice, Knockout , Mice, Transgenic , Neuralgia/metabolism , Neuralgia/genetics , Neuralgia/pathology , Neuroglia/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
3.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38106002

ABSTRACT

Nerve growth factor (NGF) monoclonal antibodies (mAb) are one of the few patient-validated non-opioid treatments for chronic pain, despite failing to gain FDA approval due to worsened joint damage in some osteoarthritis patients. Herein, we demonstrate that neuropilin-1 (NRP1) is a nociceptor-enriched co-receptor for NGF that is necessary for tropomyosin-related kinase A (TrkA) signaling of pain. NGF binds NRP1 with nanomolar affinity. NRP1 and G Alpha Interacting Protein C-terminus 1 (GIPC1), a NRP1/TrkA adaptor, are coexpressed with TrkA in human and mouse nociceptors. NRP1 small molecule inhibitors and blocking mAb prevent NGF-stimulated action potential firing and activation of Na+ and Ca2+ channels in human and mouse nociceptors and abrogate NGF-evoked and inflammatory nociception in mice. NRP1 knockdown blunts NGF-stimulated TrkA phosphorylation, kinase signaling and transcription, whereas NRP1 overexpression enhances NGF and TrkA signaling. As well as interacting with NGF, NRP1 forms a heteromeric complex with TrkA. NRP1 thereby chaperones TrkA from the biosynthetic pathway to the plasma membrane and then to signaling endosomes, which enhances NGF-induced TrkA dimerization, endocytosis and signaling. Knockdown of GIPC1, a PDZ-binding protein that scaffolds NRP1 and TrkA to myosin VI, abrogates NGF-evoked excitation of nociceptors and pain-like behavior in mice. We identify NRP1 as a previously unrecognized co-receptor necessary for NGF/TrkA pain signaling by direct NGF binding and by chaperoning TrkA to the plasma membrane and signaling endosomes via the adaptor protein GIPC1. Antagonism of NRP1 and GIPC1 in nociceptors offers a long-awaited alternative to systemic sequestration of NGF with mAbs for the treatment of pain.

4.
bioRxiv ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38106084

ABSTRACT

G protein coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR and its function remains largely unknown. Here we report that GPR37L1 transcript is highly expressed compared to all known GPCRs in mouse and human dorsal root ganglia (DRGs) and selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following diabetes and chemotherapy by streptozotocin and paclitaxel resulted in downregulations of surface GPR37L1 in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptom (mechanical allodynia), whereas overexpression of Gpr37l1 in mouse DRGs can reverse neuropathic pain. Notably, GPR37L1 is co-expressed and coupled with potassium channels in SGCs. We found striking species differences in potassium channel expression in SGCs, with predominant expression of KCNJ10 and KCNJ3 in mouse and human SGCs, respectively. GPR37L1 regulates the surface expression and function of KCNJ10 and KCNJ3. We identified the pro-resolving lipid mediator maresin 1 (MaR1) as a GPR37L1 ligand. MaR1 increases KCNJ10/KCNJ3-mediated potassium influx in SGCs via GPR37L1. MaR1 protected chemotherapy-induced suppression of KCNJ13/KCNJ10 expression and function in SGCs. Finally, genetic analysis revealed that the GPR37L1-E296K variant is associated with increased chronic pain risk by destabilizing the protein. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.

5.
Bio Protoc ; 13(24): e4906, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38156033

ABSTRACT

Satellite glial cells (SGCs) are a type of glial cell population that originates from neural crest cells. They ultimately migrate to surround the cell bodies of neurons in the ganglia of the peripheral nervous system. Under physiological conditions, SGCs perform homeostatic functions by modifying the microenvironment around nearby neurons and provide nutrients, structure, and protection. In recent years, they have gained considerable attention due to their involvement in peripheral nerve regeneration and pain. Although methods for culturing neonatal or rat SGCs have long existed, a well-characterized method for dissociating and culturing adult SGCs from mouse tissues has been lacking until recently. This has impeded further studies of their function and the testing of new therapeutics. This protocol provides a detailed description of how to obtain primary cultures of adult SGCs from mouse dorsal root ganglia in approximately two weeks with over 90% cell purity. We also demonstrate cell purity of these cultures using quantitative real-time RT-PCR and their functional integrity using calcium imaging. Key features • Detailed and simplified protocol to dissociate and culture primary satellite glial cells (SGCs) from adult mice. • Cells are dissociated in approximately 2-3 h and cultured for approximately two weeks. • These SGC cultures allow both molecular and functional studies.

6.
Brain Behav Immun ; 113: 401-414, 2023 10.
Article in English | MEDLINE | ID: mdl-37557960

ABSTRACT

Satellite glial cells (SGCs) are among the most abundant non-neuronal cells in dorsal root ganglia (DRGs) and closely envelop sensory neurons that detect painful stimuli. However, little is still known about their homeostatic activities and their contribution to pain. Using single-cell RNA sequencing (scRNA-seq), we were able to obtain a unique transcriptional profile for SGCs. We found enriched expression of the tissue inhibitor metalloproteinase 3 (TIMP3) and other metalloproteinases in SGCs. Small interfering RNA and neutralizing antibody experiments revealed that TIMP3 modulates somatosensory stimuli. TIMP3 expression decreased after paclitaxel treatment, and its rescue by delivery of a recombinant TIMP3 protein reversed and prevented paclitaxel-induced pain. We also established that paclitaxel directly impacts metalloproteinase signaling in cultured SGCs, which may be used to identify potential new treatments for pain. Therefore, our results reveal a metalloproteinase signaling pathway in SGCs for proper processing of somatosensory stimuli and potential discovery of novel pain treatments.


Subject(s)
Ganglia, Spinal , Neuroglia , Humans , Ganglia, Spinal/metabolism , Neuroglia/metabolism , Pain/metabolism , Signal Transduction , Sensory Receptor Cells , Single-Cell Analysis
7.
Pain ; 164(12): 2696-2710, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37366599

ABSTRACT

ABSTRACT: Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that binds numerous ligands including vascular endothelial growth factor A (VEGFA). Binding of this ligand to NRP-1 and the co-receptor, the tyrosine kinase receptor VEGFR2, elicits nociceptor sensitization resulting in pain through the enhancement of the activity of voltage-gated sodium and calcium channels. We previously reported that blocking the interaction between VEGFA and NRP-1 with the Spike protein of SARS-CoV-2 attenuates VEGFA-induced dorsal root ganglion (DRG) neuronal excitability and alleviates neuropathic pain, pointing to the VEGFA/NRP-1 signaling as a novel therapeutic target of pain. Here, we investigated whether peripheral sensory neurons and spinal cord hyperexcitability and pain behaviors were affected by the loss of NRP-1. Nrp-1 is expressed in both peptidergic and nonpeptidergic sensory neurons. A CRIPSR/Cas9 strategy targeting the second exon of nrp-1 gene was used to knockdown NRP-1. Neuropilin-1 editing in DRG neurons reduced VEGFA-mediated increases in CaV2.2 currents and sodium currents through NaV1.7. Neuropilin-1 editing had no impact on voltage-gated potassium channels. Following in vivo editing of NRP-1, lumbar dorsal horn slices showed a decrease in the frequency of VEGFA-mediated increases in spontaneous excitatory postsynaptic currents. Finally, intrathecal injection of a lentivirus packaged with an NRP-1 guide RNA and Cas9 enzyme prevented spinal nerve injury-induced mechanical allodynia and thermal hyperalgesia in both male and female rats. Collectively, our findings highlight a key role of NRP-1 in modulating pain pathways in the sensory nervous system.


Subject(s)
Neuralgia , Vascular Endothelial Growth Factor A , Animals , Female , Male , Rats , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , RNA, Guide, CRISPR-Cas Systems , Sensory Receptor Cells/metabolism , Sodium/metabolism , Vascular Endothelial Growth Factor A/metabolism
8.
Neurosci Bull ; 39(9): 1363-1374, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37165177

ABSTRACT

Although sympathetic blockade is clinically used to treat pain, the underlying mechanisms remain unclear. We developed a localized microsympathectomy (mSYMPX), by cutting the grey rami entering the spinal nerves near the rodent lumbar dorsal root ganglia (DRG). In a chemotherapy-induced peripheral neuropathy model, mSYMPX attenuated pain behaviors via DRG macrophages and the anti-inflammatory actions of transforming growth factor-ß (TGF-ß) and its receptor TGF-ßR1. Here, we examined the role of TGF-ß in sympathetic-mediated radiculopathy produced by local inflammation of the DRG (LID). Mice showed mechanical hypersensitivity and transcriptional and protein upregulation of TGF-ß1 and TGF-ßR1 three days after LID. Microsympathectomy prevented mechanical hypersensitivity and further upregulated Tgfb1 and Tgfbr1. Intrathecal delivery of TGF-ß1 rapidly relieved the LID-induced mechanical hypersensitivity, and TGF-ßR1 antagonists rapidly unmasked the mechanical hypersensitivity after LID+mSYMPX. In situ hybridization showed that Tgfb1 was largely expressed in DRG macrophages, and Tgfbr1 in neurons. We suggest that TGF-ß signaling is a general underlying mechanism of local sympathetic blockade.


Subject(s)
Radiculopathy , Transforming Growth Factor beta , Mice , Animals , Receptor, Transforming Growth Factor-beta Type I/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1/metabolism , Hyperalgesia/metabolism , Radiculopathy/drug therapy , Radiculopathy/metabolism , Pain/metabolism , Analgesics/pharmacology , Ganglia, Spinal/metabolism
9.
Proc Natl Acad Sci U S A ; 120(22): e2220979120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216510

ABSTRACT

The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined. Moreover, the role of natural GPCR variants, which exhibit aberrant signaling and endosomal trafficking, in maintaining pain is unknown. Herein, substance P (SP) was found to evoke clathrin-mediated assembly of endosomal signaling complexes comprising neurokinin 1 receptor (NK1R), Gαq/i, and ßarrestin-2. Whereas the FDA-approved NK1R antagonist aprepitant induced a transient disruption of endosomal signals, analogs of netupitant designed to penetrate membranes and persist in acidic endosomes through altered lipophilicity and pKa caused sustained inhibition of endosomal signals. When injected intrathecally to target spinal NK1R+ve neurons in knockin mice expressing human NK1R, aprepitant transiently inhibited nociceptive responses to intraplantar injection of capsaicin. Conversely, netupitant analogs had more potent, efficacious, and sustained antinociceptive effects. Mice expressing C-terminally truncated human NK1R, corresponding to a natural variant with aberrant signaling and trafficking, displayed attenuated SP-evoked excitation of spinal neurons and blunted nociceptive responses to SP. Thus, sustained antagonism of the NK1R in endosomes correlates with long-lasting antinociception, and domains within the C-terminus of the NK1R are necessary for the full pronociceptive actions of SP. The results support the hypothesis that endosomal signaling of GPCRs mediates nociception and provides insight into strategies for antagonizing GPCRs in intracellular locations for the treatment of diverse diseases.


Subject(s)
Endosomes , Receptors, Neurokinin-1 , Mice , Humans , Animals , Receptors, Neurokinin-1/genetics , Aprepitant/pharmacology , Substance P/pharmacology , Receptors, G-Protein-Coupled , Pain/drug therapy
10.
Mol Neurobiol ; 60(5): 2954-2968, 2023 May.
Article in English | MEDLINE | ID: mdl-36754911

ABSTRACT

Some people living with HIV present painful sensory neuropathy (HIV-SN) that is pharmacoresistant, sex-associated, and a major source of morbidity. Since the specific mechanisms underlying HIV-SN are not well understood, the aim of our study was to characterize a novel model of painful HIV-SN by combining the HIV-1 gp120 protein and the antiretroviral stavudine (d4T) in mice and to investigate the pronociceptive role of the family 2 voltage-gated calcium channel (VGCC) α1 subunit (Cav2.X channels) in such a model. HIV-SN was induced in male and female C57BL/6 mice by administration of gp120 and/or d4T and detected by a battery of behavior tests and by immunohistochemistry. The role of Cav2.X channels was assessed by the treatment with selective blockers and agonists as well as by mRNA detection. Repeated administration with gp120 and/or d4T produced long-lasting touch-evoked painful-like behaviors (starting at 6 days, reaching a maximum on day 13, and lasting up to 28 days after treatment started), with a greater intensity in female mice treated with the combination of gp120 + d4T. Moreover, gp120 + d4T treatment reduced the intraepidermal nerve fibers and well-being of female mice, without altering other behaviors. Mechanistically, gp120 + d4T treatment induced Cav2.1, 2.2, and 2.3 transcriptional increases in the dorsal root ganglion and the Cav2.X agonist-induced nociception. Accordingly, intrathecal selective Cav2.2 blockade presented longer and better efficacy in reversing the hyperalgesia induced by gp120 + d4T treatment compared with Cav2.1 or Cav2.3, but also presented the worst safety (inducing side effects at effective doses). We conclude that the family 2 calcium channels (Cav2.X) exert a critical pronociceptive role in a novel mouse model of HIV-SN.


Subject(s)
Chronic Pain , HIV Infections , Peripheral Nervous System Diseases , Male , Mice , Female , Animals , Stavudine/adverse effects , Mice, Inbred C57BL , Peripheral Nervous System Diseases/chemically induced , Calcium Channels, N-Type/metabolism , HIV Infections/drug therapy , Chronic Pain/chemically induced
11.
Pain ; 164(6): 1355-1374, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36378744

ABSTRACT

ABSTRACT: Chronic pain involves sensitization of nociceptors and synaptic transmission of painful signals in nociceptive circuits in the dorsal horn of the spinal cord. We investigated the contribution of clathrin-dependent endocytosis to sensitization of nociceptors by G protein-coupled receptors (GPCRs) and to synaptic transmission in spinal nociceptive circuits. We determined whether therapeutic targeting of endocytosis could ameliorate pain. mRNA encoding dynamin (Dnm) 1 to 3 and adaptor-associated protein kinase 1 (AAK1), which mediate clathrin-dependent endocytosis, were localized to primary sensory neurons of dorsal root ganglia of mouse and human and to spinal neurons in the dorsal horn of the mouse spinal cord by RNAScope. When injected intrathecally to mice, Dnm and AAK1 siRNA or shRNA knocked down Dnm and AAK1 mRNA in dorsal root ganglia neurons, reversed mechanical and thermal allodynia and hyperalgesia, and normalized nonevoked behavior in preclinical models of inflammatory and neuropathic pain. Intrathecally administered inhibitors of clathrin, Dnm, and AAK1 also reversed allodynia and hyperalgesia. Disruption of clathrin, Dnm, and AAK1 did not affect normal motor functions of behaviors. Patch clamp recordings of dorsal horn neurons revealed that Dnm1 and AAK1 disruption inhibited synaptic transmission between primary sensory neurons and neurons in lamina I/II of the spinal cord dorsal horn by suppressing release of synaptic vesicles from presynaptic primary afferent neurons. Patch clamp recordings from dorsal root ganglion nociceptors indicated that Dnm siRNA prevented sustained GPCR-mediated sensitization of nociceptors. By disrupting synaptic transmission in the spinal cord and blunting sensitization of nociceptors, endocytosis inhibitors offer a therapeutic approach for pain treatment.


Subject(s)
Neuralgia , Nociceptors , Rats , Animals , Humans , Nociceptors/physiology , Hyperalgesia/metabolism , Nociception/physiology , Rats, Sprague-Dawley , Synaptic Transmission , Neuralgia/metabolism , Posterior Horn Cells/metabolism , Spinal Cord Dorsal Horn , Ganglia, Spinal/physiology
12.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35110404

ABSTRACT

G protein-coupled receptors (GPCRs) regulate many pathophysiological processes and are major therapeutic targets. The impact of disease on the subcellular distribution and function of GPCRs is poorly understood. We investigated trafficking and signaling of protease-activated receptor 2 (PAR2) in colitis. To localize PAR2 and assess redistribution during disease, we generated knockin mice expressing PAR2 fused to monomeric ultrastable green fluorescent protein (muGFP). PAR2-muGFP signaled and trafficked normally. PAR2 messenger RNA was detected at similar levels in Par2-mugfp and wild-type mice. Immunostaining with a GFP antibody and RNAScope in situ hybridization using F2rl1 (PAR2) and Gfp probes revealed that PAR2-muGFP was expressed in epithelial cells of the small and large intestine and in subsets of enteric and dorsal root ganglia neurons. In healthy mice, PAR2-muGFP was prominently localized to the basolateral membrane of colonocytes. In mice with colitis, PAR2-muGFP was depleted from the plasma membrane of colonocytes and redistributed to early endosomes, consistent with generation of proinflammatory proteases that activate PAR2 PAR2 agonists stimulated endocytosis of PAR2 and recruitment of Gαq, Gαi, and ß-arrestin to early endosomes of T84 colon carcinoma cells. PAR2 agonists increased paracellular permeability of colonic epithelial cells, induced colonic inflammation and hyperalgesia in mice, and stimulated proinflammatory cytokine release from segments of human colon. Knockdown of dynamin-2 (Dnm2), the major colonocyte isoform, and Dnm inhibition attenuated PAR2 endocytosis, signaling complex assembly and colonic inflammation and hyperalgesia. Thus, PAR2 endocytosis sustains protease-evoked inflammation and nociception and PAR2 in endosomes is a potential therapeutic target for colitis.


Subject(s)
Colon/metabolism , Endocytosis/physiology , Fluorescent Dyes/metabolism , Inflammation/metabolism , Pain/metabolism , Receptor, PAR-2/metabolism , Animals , Arrestins/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , Female , Ganglia, Spinal/metabolism , Humans , Mice , Mice, Inbred C57BL , Nociception/physiology , Signal Transduction/physiology
13.
Brain Res ; 1764: 147438, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33753067

ABSTRACT

Central sensitization (CS) is characteristic of difficult to treat painful conditions, such as fibromyalgia and neuropathies and have sexual dimorphism involved. The calcium influx in nociceptive neurons is a key trigger for CS and the role of Cav2.1 and Cav2.2 voltage gated calcium channels (VGCC) in this role were evidenced with the use of ω-agatoxin IVA and ω-agatoxin MVIIA blockers, respectively. However, the participation of the α1 subunit of the voltage-gated channel Cav2.3, which conducts R-type currents, in CS is unknown. Furthermore, the role of sexual differences in painful conditions is still poorly understood. Thus, we investigated the role of Cav2.3 in capsaicin-induced secondary hyperalgesia in mice, which serve as a CS model predictive of the efficacy of novel analgesic drugs. Capsaicin injection in C57BL/6 mice caused secondary hyperalgesia from one to five hours after injection, and the effects were similar in male and female mice. In female but not male mice, intrathecal treatment with the Cav2.3 inhibitor SNX-482 partially and briefly reversed secondary hyperalgesia at a dose (300 pmol/site) that did not cause adverse effects. Moreover, Cav2.3 expression in the dorsal root ganglia (DRG) and spinal cord was reduced by intrathecal treatment with an antisense oligonucleotide (ASO) targeting Cav2.3 in female and male mice. However, ASO treatment was able to provide a robust and durable prevention of secondary hyperalgesia caused by capsaicin in female mice, but not in male mice. Thus, our results demonstrate that Cav2.3 inhibition, especially in female mice, has a relevant impact on a model of CS. Our results provide a proof of concept for Cav2.3 as a molecular target. In addition, the result associated to the role of differences in painful conditions linked to sex opens a range of possibilities to be explored and needs more attention. Thus, the relevance of testing Cav2.3 inhibition or knockdown in clinically relevant pain models is needed.


Subject(s)
Calcium Channels, R-Type/genetics , Cation Transport Proteins/genetics , Central Nervous System Sensitization/genetics , Hyperalgesia/genetics , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, R-Type/drug effects , Capsaicin , Cation Transport Proteins/drug effects , Central Nervous System Sensitization/drug effects , Dose-Response Relationship, Drug , Female , Ganglia, Spinal/metabolism , Gene Knockdown Techniques , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Male , Mice , Mice, Inbred C57BL , Oligonucleotides, Antisense/pharmacology , Sex Characteristics , Spider Venoms/pharmacology , Spinal Cord/metabolism
14.
Brain Behav Immun ; 91: 556-567, 2021 01.
Article in English | MEDLINE | ID: mdl-33197543

ABSTRACT

Chronic low back pain is a common condition, with high societal costs and often ineffectual treatments. Communication between macrophages/monocytes (MØ) and sensory neurons has been implicated in various preclinical pain models. However, few studies have examined specific MØ subsets, although distinct subtypes may play opposing roles. This study used a model of low back pain/radiculopathy involving direct local inflammation of the dorsal root ganglia (DRG). Reporter mice were employed that had distinct fluorescent labels for two key MØ subsets: CCR2-expressing (infiltrating pro-inflammatory) MØ, and CX3CR1-expressing (resident) macrophages. We observed that local DRG inflammation induced pain behaviors in mice, including guarding behavior and mechanical hypersensitivity, similar to the previously described rat model. The increase in MØ in the inflamed DRG was dominated by increases in CCR2+ MØ, which persisted for at least 14 days. The primary endogenous ligand for CCR2, CCL2, was upregulated in inflamed DRG. Three different experimental manipulations that reduced the CCR2+ MØ influx also reduced pain behaviors: global CCR2 knockout; systemic injection of INCB3344 (specific CCR2 blocker); and intravenous injection of liposomal clodronate. The latter two treatments when applied around the time of DRG inflammation reduced CCR2+ but not CX3CR1+ MØ in the DRG. Together these experiments suggest a key role for the CCR2/CCL2 system in establishing the pain state in this model of inflammatory low back pain and radiculopathy. Intravenous clodronate given after pain was established had the opposite effect on pain behaviors, suggesting the role of macrophages or their susceptibility to clodronate may change with time.


Subject(s)
Low Back Pain , Radiculopathy , Receptors, CCR2 , Animals , Chemokine CCL2 , Clodronic Acid , Disease Models, Animal , Ganglia, Spinal , Macrophages , Mice , Receptors, CCR2/genetics
15.
Theranostics ; 10(26): 12111-12126, 2020.
Article in English | MEDLINE | ID: mdl-33204332

ABSTRACT

Rationale: Psoriasis is a chronic inflammatory disease caused by a complex interplay between the immune and nervous systems with recurrent scaly skin plaques, thickened stratum corneum, infiltration and activation of inflammatory cells, and itch. Despite an increasing availability of immune therapies, they often have adverse effects, high costs, and dissociated effects on inflammation and itch. Activation of sensory neurons innervating the skin and TRPV1 (transient receptor potential vanilloid 1) are emerging as critical components in the pathogenesis of psoriasis, but little is known about their endogenous inhibitors. Recent studies have demonstrated that resolvins, endogenous lipid mediators derived from omega-3 fatty acids, are potent inhibitors of TRP channels and may offer new therapies for psoriasis without known adverse effects. Methods: We used behavioral, electrophysiological and biochemical approaches to investigate the therapeutic effects of resolvin D3 (RvD3), a novel family member of resolvins, in a preclinical model of psoriasis consisting of repeated topical applications of imiquimod (IMQ) to murine skin, which provokes inflammatory lesions that resemble human psoriasis. Results: We report that RvD3 specifically reduced TRPV1-dependent acute pain and itch in mice. Mechanistically, RvD3 inhibited capsaicin-induced TRPV1 currents in dissociated dorsal root ganglion (DRG) neurons via the N-formyl peptide receptor 2 (i.e. ALX/FPR2), a G-protein coupled receptor. Single systemic administration of RvD3 (2.8 mg/kg) reversed itch after IMQ, and repeated administration largely prevented the development of both psoriasiform itch and skin inflammation with concomitant decreased in calcitonin gene-related peptide (CGRP) expression in DRG neurons. Accordingly, specific knockdown of CGRP in DRG was sufficient to prevent both psoriasiform itch and skin inflammation similar to the effects following RvD3 administration. Finally, we elevated the translational potential of this study by showing that RvD3 significantly inhibited capsaicin-induced TRPV1 activity and CGRP release in human DRG neurons. Conclusions: Our findings demonstrate a novel role for RvD3 in regulating TRPV1/CGRP in mouse and human DRG neurons and identify RvD3 and its neuronal pathways as novel therapeutic targets to treat psoriasis.


Subject(s)
Fatty Acids, Unsaturated/pharmacology , Pain/drug therapy , Pruritus/drug therapy , Psoriasis/drug therapy , TRPV Cation Channels/antagonists & inhibitors , Animals , Biopsy , Calcitonin Gene-Related Peptide/genetics , Calcitonin Gene-Related Peptide/metabolism , Capsaicin/toxicity , Cells, Cultured , Disease Models, Animal , Fatty Acids, Unsaturated/therapeutic use , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Ganglia, Spinal/immunology , Gene Knockdown Techniques , Humans , Male , Mice , Neuroimmunomodulation/drug effects , Neuroimmunomodulation/immunology , Neurons/drug effects , Neurons/metabolism , Pain/chemically induced , Pain/immunology , Pain/pathology , Patch-Clamp Techniques , Primary Cell Culture , Pruritus/chemically induced , Pruritus/immunology , Pruritus/pathology , Psoriasis/complications , Psoriasis/immunology , Psoriasis/pathology , Skin/drug effects , Skin/immunology , Skin/innervation , TRPV Cation Channels/metabolism
16.
Toxicon ; 188: 80-88, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33038354

ABSTRACT

Opioids are the "gold standard" treatment for postoperative pain, but these drugs also have limiting adverse effects. Thus, adjuvant drugs might be useful in opioid therapy for postoperative pain. The aim of the present study was to evaluate the effect of Phα1ß, a dual blocker of Cav2 and TRPA1 channels, on antinociceptive and adverse actions of morphine in a model of postoperative pain. Phα1ß (100-300 pmol/site) or morphine (3-10 mg/kg), alone, largely reduced postoperative nociception. However, Phα1ß (100 pmol/site) or morphine (10 mg/kg) also produced motor impairment. Lower doses of Phα1ß (30 pmol/site) or morphine (1 mg/kg), that did not have an effect alone, showed antinociceptive effect when concomitantly administrated. Moreover, co-administration of Phα1ß (30 pmol/site) with morphine (1 or 10 mg/kg) was unable to cause motor impairment. Preoperative repeated treatment with morphine increased the expression of Cav2 and TRPA1 channels in spinal cord, and caused tolerance and withdrawal syndrome, which were reversed with a single injection of Phα1ß (30 pmol/site). When injected postoperatively, escalating doses of morphine worsened postoperative hyperalgesia, induced tolerance, and withdrawal syndrome. Similarly, Phα1ß (30 pmol/site) reversed these adverse effects. Single or repeated morphine caused constipation, which was not altered by Phα1ß. Thus, a low dose of Phα1ß potentiated the analgesia, and reversed some adverse effects of morphine on operated mice, indicating the potential use of this agent as an adjuvant drug in opioid therapy for postoperative pain.


Subject(s)
Analgesics, Opioid/therapeutic use , Chemotherapy, Adjuvant/methods , Pain, Postoperative/drug therapy , Spider Venoms/therapeutic use , Analgesics , Animals , Calcium Channels, N-Type/metabolism , Hyperalgesia/chemically induced , Mice , Morphine , Spider Venoms/pharmacology , TRPA1 Cation Channel/metabolism
17.
Anesthesiology ; 132(6): 1540-1553, 2020 06.
Article in English | MEDLINE | ID: mdl-32404819

ABSTRACT

BACKGROUND: Patients undergoing cancer treatment often experience chemotherapy-induced neuropathic pain at their extremities, for which there is no U.S. Food and Drug Administration-approved drug. The authors hypothesized that local sympathetic blockade, which is used in the clinic to treat various pain conditions, can also be effective to treat chemotherapy-induced neuropathic pain. METHODS: A local sympathectomy (i.e., cutting the ipsilateral gray rami entering the spinal nerves near the L3 and L4 dorsal root ganglia) was performed in mice receiving intraperitoneal injections every other day of the chemotherapeutic drug paclitaxel. Sympathectomy effects were then assessed in chemotherapy-induced pain-like behaviors (i.e., mechanical and cold allodynia) and neuroimmune and electrophysiologic responses. RESULTS: Local microsympathectomy produced a fast recovery from mechanical allodynia (mean ± SD: sympathectomy vs. sham at day 5, 1.07 ± 0.34 g vs. 0.51 ± 0.17g, n = 5, P = 0.030 in male mice, and 1.08 ± 0.28 g vs. 0.62 ± 0.16 g, n = 5, P = 0.036 in female mice) and prevented the development of cold allodynia in both male and female mice after paclitaxel. Mechanistically, microsympathectomy induced transcriptional increases in dorsal root ganglia of macrophage markers and anti-inflammatory cytokines, such as the transforming growth factor-ß. Accordingly, depletion of monocytes/macrophages and blockade of transforming growth factor-ß signaling reversed the relief of mechanical allodynia by microsympathectomy. In particular, exogenous transforming growth factor-ß was sufficient to relieve mechanical allodynia after paclitaxel (transforming growth factor-ß 100 ng/site vs. vehicle at 3 h, 1.21 ± 0.34g vs. 0.53 ± 0.14 g, n = 5, P = 0.001 in male mice), and transforming growth factor-ß signaling regulated neuronal activity in dorsal root ganglia. CONCLUSIONS: Local sympathetic nerves control the progression of immune responses in dorsal root ganglia and pain-like behaviors in mice after paclitaxel, raising the possibility that clinical strategies already in use for local sympathetic blockade may also offer an effective treatment for patients experiencing chemotherapy-induced neuropathic pain.


Subject(s)
Hyperalgesia/chemically induced , Hyperalgesia/prevention & control , Inflammation/chemically induced , Inflammation/prevention & control , Paclitaxel/adverse effects , Sympathectomy , Animals , Antineoplastic Agents, Phytogenic/adverse effects , Cold Temperature , Disease Models, Animal , Female , Male , Mice
18.
J Invest Dermatol ; 140(11): 2221-2229.e6, 2020 11.
Article in English | MEDLINE | ID: mdl-32289348

ABSTRACT

Psoriasis is an inflammatory skin disease associated with itch, which is a troublesome symptom with a few therapeutic options. TRPC4 is highly expressed in dorsal root ganglia (DRGs). Recently, we have revealed itch signaling in DRG neurons by which TRPC4 mediates itch to serotonergic antidepressants and demonstrated the antipruritic effect of the TRPC4 inhibitor ML204. However, the role of TRPC4 in acute and chronic itch is still largely unknown. Here, we have characterized the expression of TRPC4 in peptidergic DRG neurons and showed that acute itch induced by serotonin and histamine was attenuated in Trpc4-knockout mice and ML204-treated mice. We have also shown that silencing TRPC4 in DRG and its inhibition by intradermal injections were also effective in decreasing psoriatic itch after the repeated application of imiquimod, which is a preclinical model of psoriasis. Of clinical relevance, intradermal injections of ML204 in psoriasiform skin significantly reversed imiquimod-established chronic itch and cutaneous inflammation. Given that TRPC4 is expressed in human DRGs and a specific inhibitor is in clinical trials, our data not only expand our understanding of itch and psoriasis, but also reveal TRPC4 as a potential therapeutic target with considerable translational benefits.


Subject(s)
Dermatitis/etiology , Ganglia, Spinal/physiology , Pruritus/etiology , Psoriasis/etiology , TRPC Cation Channels/physiology , Animals , Dermatitis/drug therapy , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Pruritus/drug therapy , Psoriasis/drug therapy , Serotonin/pharmacology , TRPC Cation Channels/antagonists & inhibitors
19.
Glia ; 68(10): 2119-2135, 2020 10.
Article in English | MEDLINE | ID: mdl-32220118

ABSTRACT

Spinal microglia change their phenotype and proliferate after nerve injury, contributing to neuropathic pain. For the first time, we have characterized the electrophysiological properties of microglia and the potential role of microglial potassium channels in the spared nerve injury (SNI) model of neuropathic pain. We observed a strong increase of inward currents restricted at 2 days after injury associated with hyperpolarization of the resting membrane potential (RMP) in microglial cells compared to later time-points and naive animals. We identified pharmacologically and genetically the current as being mediated by Kir2.1 ion channels whose expression at the cell membrane is increased 2 days after SNI. The inhibition of Kir2.1 with ML133 and siRNA reversed the RMP hyperpolarization and strongly reduced the currents of microglial cells 2 days after SNI. These electrophysiological changes occurred coincidentally to the peak of microglial proliferation following nerve injury. In vitro, ML133 drastically reduced the proliferation of BV2 microglial cell line after both 2 and 4 days in culture. In vivo, the intrathecal injection of ML133 significantly attenuated the proliferation of microglia and neuropathic pain behaviors after nerve injury. In summary, our data implicate Kir2.1-mediated microglial proliferation as an important therapeutic target in neuropathic pain.


Subject(s)
Cell Proliferation/physiology , Microglia/metabolism , Neuralgia/metabolism , Potassium Channel Blockers/administration & dosage , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Spinal Cord/metabolism , Animals , Cell Line, Transformed , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Imidazoles/administration & dosage , Injections, Spinal , Male , Mice , Mice, Transgenic , Microglia/drug effects , Neuralgia/prevention & control , Phenanthrolines/administration & dosage , Potassium Channels, Inwardly Rectifying/biosynthesis , Spinal Cord/cytology , Spinal Cord/drug effects
20.
J Neuroinflammation ; 16(1): 209, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31707979

ABSTRACT

BACKGROUND: Paclitaxel is a widely used and potent chemotherapeutic agent for the treatment of cancer. However, patients receiving paclitaxel often develop an acute pain syndrome for which there are few treatment options. Astrocytes play an important role in the pathogenesis of pain in multiple preclinical models, as well as in paclitaxel-treated rodents. However, it is still unclear what the exact contribution of astrocytes may be in paclitaxel-associated acute pain syndrome (P-APS). METHODS: P-APS was modeled by a single systemic or intrathecal injection of paclitaxel and astrocyte contribution tested by immunohistochemical, pharmacological, and behavioral approaches. Cell cultures were also prepared to assess whether paclitaxel treatment directly activates astrocytes and whether intrathecal injection of paclitaxel-treated astrocytes produces pain that is reminiscent of P-APS. RESULTS: Systemic injection of paclitaxel resulted in increased expression of glial fibrillary acidic protein (a common marker of astrocytic activation), as well as both systemic or intrathecal injection of paclitaxel induced pain hypersensitivity indicated by the development of mechanical allodynia, which was significantly reversed by the astrocytic inhibitor L-α-AA. Cultured astrocytes were activated by paclitaxel with significant increases in protein levels for tumor necrosis factor-α (TNF-α) and stromal-derived cell factor 1 (SDF-1). Importantly, intrathecal injection of paclitaxel-activated astrocytes produced mechanical allodynia that was reversed by TNF-α and SDF-1 neutralizing antibodies. CONCLUSION: Our results suggest for the first time that paclitaxel can directly activate astrocytes, which are sufficient to produce acute pain by releasing TNF-α and SDF-1. Targeting astrocytes and these cytokines may offer new treatments for P-APS.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Astrocytes/metabolism , Chemokine CXCL12/metabolism , Hyperalgesia/metabolism , Paclitaxel/toxicity , Tumor Necrosis Factor-alpha/metabolism , Animals , Astrocytes/drug effects , Female , Hyperalgesia/chemically induced , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...