Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Cytotechnology ; 69: 31-37, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15480

ABSTRACT

Many active principles produced by animals, plants and microorganisms have been employed in the development of new drugs for the treatment of human diseases. Among animals known to produce pharmacologically active molecules that interfere in human cell physiology. Rubella virus (genus Rubivirus, family Togaviridae) is a single stranded RNA virus of positive genome polarity. Rubella virus infection of susceptible women during the first trimester of pregnancy often results in long-term virus persistence in the fetus causing multiple organ abnormalities. Potent antiviral activity against rubella virus (RV) has been observed in the hemolymph of Podalia sp. (Lepidoptera: Megalopygidae). This study evaluated the effect of hemolymph on RV infected Statens Serum Institute Rabbit Cornea (SIRC) cells. Results of cell viability and cell proliferation assays indicated that hemolymph was not toxic to cultured SIRC cells. Viral binding assay, antiviral assay, PCR, real-time PCR, and transmission electron microscopy were used to demonstrate that hemolymph in post-treatment could inhibit the production of infectious RV particles. Specifically, hemolymph was found to inhibit RV adsorption to the SIRC cells.

2.
Antiviral Res ; 134: 172-181, 2016 10.
Article in English | MEDLINE | ID: mdl-27623346

ABSTRACT

Measles is a viral disease highly contagious spread by respiratory transmission. Although infection can be controlled by vaccination, numerous cases of measles have been registered in many areas of the world, highlighting the need for additional interventions. Terrestrial gastropods exude mucus on their body surface when traveling, to protect the body from mechanical injury, desiccation or contact with harmful substances. The mucus of mollusks has been studied as a source of new natural compounds with diverse biological activities. In this study, the antiviral activity of the mucus of the land slug P. boraceiensis was demonstrated in vitro using Vero cells infected with measles virus. The crude sample and four fractions were tested in cultures infected with measles virus and the antiviral activity was assessed by the cytopathic effect in infected cell cultures as well as by immunofluorescence and qPCR. Fractions 39 and 50 of the mucus from P. boraceiensis were analyzed by HPLC-DAD-ESI-MS/MS and infrared spectroscopy. A mixture of polyunsaturated fatty acids was found in the two fractions. A reduction in the growth of the measles virus was observed, measured by qPCR, with a protection index of 80% in Vero cells infected with measles and treated with fraction 39. Fraction 39 exhibited the best antiviral action in vitro and high contents of hydroxy-tritriacontapentaenoic acid and hydroxy-pentatriacontapentaenoic acid were found in this fraction.


Subject(s)
Antiviral Agents/pharmacology , Measles virus/drug effects , Mollusca/chemistry , Mucus/chemistry , Mucus/metabolism , Animals , Antiviral Agents/isolation & purification , Biological Products/chemistry , Biological Products/pharmacology , Carboxylic Acids/isolation & purification , Carboxylic Acids/pharmacology , Chlorocebus aethiops , Drug Discovery , Fatty Acids/isolation & purification , Fatty Acids/pharmacology , Tandem Mass Spectrometry , Vero Cells , Virus Replication/drug effects
3.
Antiviral Res ; 134: p. 172-181, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14193

ABSTRACT

Measles is a viral disease highly contagious spread by respiratory transmission. Although infection can be controlled by vaccination, numerous cases of measles have been registered in many areas of the world, highlighting the need for additional interventions. Terrestrial gastropods exude mucus on their body surface when traveling, to protect the body from mechanical injury, desiccation or contact with harmful substances. The mucus of mollusks has been studied as a source of new natural compounds with diverse biological activities. In this study, the antiviral activity of the mucus of the land slug P. boraceiensis was demonstrated in vitro using Vero cells infected with measles virus. The crude sample and four fractions were tested in cultures infected with measles virus and the antiviral activity was assessed by the cytopathic effect in infected cell cultures as well as by immunofluorescence and qPCR. Fractions 39 and 50 of the mucus from P. boraceiensis were analyzed by HPLC-DAD-ESI-MS/MS and infrared spectroscopy. A mixture of polyunsaturated fatty acids was found in the two fractions. A reduction in the growth of the measles virus was observed, measured by qPCR, with a protection index of 80% in Vero cells infected with measles and treated with fraction 39. Fraction 39 exhibited the best antiviral action in vitro and high contents of hydroxy-tritriacontapentaenoic acid and hydroxy-pentatriacontapentaenoic acid were found in this fraction. (C) 2016 Elsevier B.V. All rights reserved.


Subject(s)
Virology , Pathology
4.
Ciênc. rural ; 45(9): 1606-1612, set. 2015. ilus
Article in Portuguese | LILACS | ID: lil-756436

ABSTRACT

A conversão da biomassa vegetal proveniente de resíduos agroindustriais e florestais em biocombustíveis e bioprodutos, dentro do conceito de biorrefinarias, é de grande interesse, principalmente para o Brasil, onde a agroenergia possui um enorme potencial de desenvolvimento. Entretanto, para garantir a viabilidade do processo de conversão, é fundamental reduzir o custo das enzimas utilizadas na etapa de hidrólise. Para isso, deve-se dispor da peça chave deste processo, que é o microrganismo. Nesse contexto, o objetivo deste trabalho foi avaliar fungos isolados da região Amazônica em relação ao potencial de produção das enzimas celulases e xilanases. De um total de 40 isolados cultivados por fermentação em estado sólido (FES), durante 10 dias, os fungos que se destacaram quanto à produção de endoglucanase (351,79Ug-1 em 120h) e β-glicosidase (62,31Ug-1em 72h) foi o P47C3 (A. niger), e na produção de xilanase (1076,94Ug-1 em 72h) e FPase (2,46Ug-1 em 120h) foram o P6B2 (A. oryzae) e o P40B3, respectivamente. Os resultados obtidos demonstram o enorme potencial de aplicação das enzimas produzidas pelos fungos isolados da Amazônia, contribuindo, assim, para gerar os avanços tecnológicos necessários para o aumento da eficiência do uso da biomassa vegetal como fonte de energia renovável

.

The conversion of biomass from forestry and agroindustrial residues into biofuels and bioproducts, within the biorefinery concept, is of great interest, especially to Brazil, where bioenergy has a huge potential for development. However, to ensure the viability of the conversion process it is essential to reduce the cost of the enzymes used in the hydrolysis step. For this, one must have the key element of this process, which is the microorganism. In this context, the objective of this study was to evaluate different fungi isolated from the Amazon region for their potential in terms of the production of cellulase and xylanase enzymes. Of a total of 40 strains cultivated under solid state fermentation (SSF) for 10 days, the strain that stood out for the production of endoglucanase (351.79Ug-1120h) and β-glucosidase (62.31Ug-1 at 72h) was P47C3 (A. niger) whereas for xylanase (1076.94Ug-1 in 72 hours) and FPase (2.46Ug-1 in120 hours) were P6B2 (A. oryzae) and P40B3, respectively. These results demonstrate the great potential application of the enzymes produced by the Amazon isolated fungi, thus contributing to generate the necessary technological advances in order to increase the efficiency of the use of biomass as a renewable energy source.

.

SELECTION OF CITATIONS
SEARCH DETAIL
...