Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 08 10.
Article in English | MEDLINE | ID: mdl-34372969

ABSTRACT

Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury. Administration of the pituitary neurohormones ß-endorphin or Arg-vasopressin-induced side-specific hindlimb responses in naive animals, while antagonists of the opioid and vasopressin receptors blocked hindlimb postural asymmetry in rats with brain injury. Thus, in addition to the well-established involvement of motor pathways descending from the brain to spinal circuits, the side-specific humoral signaling may also add to postural and reflex asymmetries seen after brain injury.


Brain trauma or a stroke often lead to severe problems in posture and movement. These injuries frequently occur only on one side, causing asymmetrical motor changes: damage to the left brain hemisphere triggers abnormal contractions of the right limbs, and vice-versa. The injuries can disrupt neural tracts between the brain and the spinal cord, the structure that conveys electric messages to muscles. However, research has also shed light on new actors: the hormones released into the bloodstream by the pituitary gland. Similar to the effects of brain lesions, several of these molecules cause asymmetric posture in healthy rats. In fact, a group of hormones can trigger muscle contraction of the left back leg, and another of the right one. Could pituitary hormones mediate the asymmetric effects of brain injuries? To investigate this question, Lukoyanov, Watanabe, Carvalho, Kononenko, Sarkisyan et al. focused on rats in which the connection between the brain and the spinal cord segments that control the hindlimbs had been surgically removed. This stopped transmission of electric messages from the brain to muscles in the back legs. Strikingly, lesions on one side of the brain in these animals still led to asymmetric posture, with contraction of the leg on the opposite side of the body. These effects were abolished when the pituitary gland was excised. Postural asymmetry also emerged when blood serum from injured rats was injected into healthy animals. The findings suggest that hormones play an essential role in signalling from the brain to the spinal cord. Further experiments identified that two pituitary hormones, ß-endorphin and Arg-vasopressin, induced contraction of the right but not the left hindlimb of healthy animals. In addition, small molecules that inhibit these hormones could block the deficits seen on the right side after an injury on the left hemisphere of the brain. Taken together, these results show that neurons in the spinal cord are not just controlled by the neural tracts that descend from the brain, but also by hormones which have left-right side-specific actions. This unique signalling could be a part of a previously unknown hormonal mechanism that selectively targets either the left or the right side of the body. This knowledge could help to design side-specific treatments for stroke and brain trauma.


Subject(s)
Brain Injuries/physiopathology , Neural Pathways/physiology , Reflex , Sensorimotor Cortex/physiology , Animals , Brain Injuries/metabolism , Male , Neural Pathways/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar
2.
Brain Res ; 1695: 78-83, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29852138

ABSTRACT

The endogenous opioid system (EOS) controls the processing of nociceptive stimuli and is a pharmacological target for opioids. Alterations in expression of the EOS genes under neuropathic pain condition may account for low efficacy of opioid drugs. We here examined whether EOS expression patterns are altered in the lumbar spinal cord of the rats with spinal nerve ligation (SNL) as a neuropathic pain model. Effects of the left- and right-side SNL on expression of EOS genes in the ipsi- and contralateral spinal domains were analysed. The SNL-induced changes were complex and different between the genes; between the dorsal and ventral spinal domains; and between the left and right sides of the spinal cord. Prodynorphin (Pdyn) expression was upregulated in the ipsilateral dorsal domains by each the left and right-side SNL, while changes in expression of µ-opioid receptor (Oprm1) and proenkephalin (Penk) genes were dependent on the SNL side. Changes in expression of the Pdyn and κ-opioid receptor (Oprk1) genes were coordinated between the ipsi- and contralateral sides. Withdrawal response thresholds, indicators of mechanical allodynia correlated negatively with Pdyn expression in the right ventral domain after right side SNL. These findings suggest multiple roles of the EOS gene products in spinal sensitization and changes in motor reflexes, which may differ between the left and right sides.


Subject(s)
Analgesics, Opioid/pharmacology , Gene Expression/drug effects , Neuralgia/drug therapy , Opioid Peptides/genetics , Spinal Cord/drug effects , Animals , Gene Expression/genetics , Neuralgia/metabolism , Opioid Peptides/metabolism , Pain Threshold/drug effects , Rats, Sprague-Dawley , Receptors, Opioid/metabolism , Receptors, Opioid, mu/drug effects , Receptors, Opioid, mu/metabolism , Spinal Cord/metabolism , Spinal Nerves/metabolism
3.
FASEB J ; 31(5): 1953-1963, 2017 05.
Article in English | MEDLINE | ID: mdl-28122917

ABSTRACT

Regulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas. Opioid peptide genes, compared with their receptor genes, are transcribed at much greater absolute levels, which suggests formation of a neuropeptide cloud that covers the receptor-expressed circuits. Surprisingly, we found that both expression levels and the proportion of opioid receptors are strongly lateralized in the spinal cord, interregional coexpression patterns are side specific, and intraregional coexpression profiles are affected differently by left- and right-side unilateral body injury. We propose that opioid genes are regulated as interconnected components of the same molecular system distributed between distinct anatomic regions. The striking feature of this system is its asymmetric coexpression patterns, which suggest side-specific regulation of selective neural circuits by opioid neurohormones.-Kononenko, O., Galatenko, V., Andersson, M., Bazov, I., Watanabe, H., Zhou, X. W., Iatsyshyna, A., Mityakina, I., Yakovleva, T., Sarkisyan, D., Ponomarev, I., Krishtal, O., Marklund, N., Tonevitsky, A., Adkins, D. L., Bakalkin, G. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits.


Subject(s)
Analgesics, Opioid/metabolism , Nerve Net/metabolism , Receptors, Opioid/metabolism , Spinal Cord/metabolism , Animals , Male , Neuropeptides/metabolism , Pain/metabolism , Rats, Long-Evans , Receptors, Opioid/genetics
4.
Histochem Cell Biol ; 121(6): 429-39, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15221413

ABSTRACT

Transport of the ribosome-inactivating protein ricin through endosomes was studied in A431 cells expressing Rab5-, Rab4-, and Rab11-GFP. It was shown that Rab5- and Rab4-positive functional domains of early endosomes are involved in ricin transport. Ricin enters cells by both clathrin-dependent and clathrin-independent mechanisms. The main pool of internalized toxin accumulates in early endosomes and remains associated with them for a long time. In contrast to earlier observations, current observations indicate that the majority of ricin avoids transport to lysosomes. The low level of ricin association with Rab11 as well as with transferrin accumulated in the pericentriolar recycling compartment shows that the compartment is not responsible for keeping ricin away from degradation in lysosomes. Escape from degradation in lysosomes is assumed to result from the potentiality of ricin to form assemblies within compartments.


Subject(s)
Endosomes/metabolism , Ricin/metabolism , rab GTP-Binding Proteins/metabolism , rab4 GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , Cell Line, Tumor , Clathrin/metabolism , Endosomes/ultrastructure , Green Fluorescent Proteins/genetics , Humans , Microscopy, Confocal , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ricin/genetics , Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...