Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 220(Pt 16): 2993-3000, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28596214

ABSTRACT

Minimizing whole-body metabolic cost has been suggested to drive the neural processes of locomotor adaptation. Mechanical work performed by the legs should dictate the major changes in whole-body metabolic cost of walking while providing greater insight into temporal and spatial mechanisms of adaptation. We hypothesized that changes in mechanical work by the legs during an asymmetric split-belt walking adaptation task could explain previously observed changes in whole-body metabolic cost. We predicted that subjects would immediately increase mechanical work performed by the legs when first exposed to split-belt walking, followed by a gradual decrease throughout adaptation. Fourteen subjects walked on a dual-belt instrumented treadmill. Baseline trials were followed by a 10-min split-belt adaptation condition with one belt running three times faster than the other. A post-adaptation trial with both belts moving at 0.5 m s-1 demonstrated neural adaptation. As predicted, summed mechanical work from both legs initially increased abruptly and gradually decreased over the adaptation period. The initial increase in work was primarily due to increased positive work by the leg on the fast belt during the pendular phase of the gait cycle. Neural adaptation in asymmetric split-belt walking reflected the reduction of pendular phase work in favor of more economical step-to-step transition work. This may represent a generalizable framework for how humans initially and chronically learn new walking patterns.


Subject(s)
Adaptation, Physiological , Energy Metabolism , Walking , Adult , Biomechanical Phenomena , Female , Humans , Male , Young Adult
2.
J Biomech ; 53: 136-143, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28126335

ABSTRACT

Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work.


Subject(s)
Adaptation, Physiological , Amputation, Surgical , Exercise Test , Mechanical Phenomena , Tibia/surgery , Walking/physiology , Adult , Ankle/physiology , Biomechanical Phenomena , Female , Humans , Male
3.
Exp Brain Res ; 234(10): 3011-23, 2016 10.
Article in English | MEDLINE | ID: mdl-27334888

ABSTRACT

Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady-state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step to step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production.


Subject(s)
Ankle/physiology , Knee/physiology , Leg/physiology , Motor Skills/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Exercise Test , Female , Humans , Male , Middle Aged , Models, Biological
4.
Exp Brain Res ; 231(4): 433-43, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24081680

ABSTRACT

Human walking dynamics are typically framed in the context of mechanics and energetics rather than in the context of neuromuscular control. Dynamic walking principles describe one helpful theoretical approach to characterize efficient human walking mechanics over many steps. These principles do not, however, address how such walking is controlled step-by-step despite small perturbations from natural variability. Our purpose was to identify neuromechanical control strategies used to achieve consistent and robust locomotion despite natural step-to-step force variability. We used the uncontrolled manifold concept to test whether human walkers select combinations of leading and trailing leg-forces that generate equivalent net-force trajectories during step-to-step transitions. Subjects selected leading and trailing leg-force combinations that generated consistent vertical net-force during step-to-step transitions. We conclude that vertical net-force is an implicit neuromechanical goal of human walking whose trajectory is stabilized for consistent step-to-step transitions, which agrees with the principles of dynamic walking. In contrast, inter-leg-force combinations modulated anterior-posterior net-force trajectories with each step to maintain constant walking speed, indicating that a consistent anterior-posterior net-force trajectory is not an implicit goal of walking. For a more complete picture of hierarchical locomotor control, we also tested whether each individual leg-force trajectory was stabilized through the selection of leg-force equivalent joint-torque combinations. The observed consistent vertical net-force trajectory was achieved primarily through the selection of joint-torque combinations that modulated trailing leg-force during step-to-step transitions. We conclude that humans achieve robust walking by harnessing inherent motor abundance of the joints and legs to maintain consistent step-by-step walking performance.


Subject(s)
Joints/physiology , Leg/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Exercise Test , Female , Humans , Male , Middle Aged , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...