Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(8): 4483-4501, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587191

ABSTRACT

Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.


Subject(s)
CRISPR-Cas Systems , Genes, Reporter , RNA Precursors , mRNA Cleavage and Polyadenylation Factors , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Genome, Human , HEK293 Cells , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Polyadenylation , RNA Cleavage , RNA Polymerase II/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics
2.
G3 (Bethesda) ; 14(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38478595

ABSTRACT

DDX11/Chl1R is a conserved DNA helicase with roles in genome maintenance, DNA replication, and chromatid cohesion. Loss of DDX11 in humans leads to the rare cohesinopathy Warsaw breakage syndrome. DDX11 has also been implicated in human cancer where it has been proposed to have an oncogenic role and possibly to constitute a therapeutic target. Given the multiple roles of DDX11 in genome stability and its potential as an anticancer target, we set out to define a complete genetic interaction profile of DDX11 loss in human cell lines. Screening the human genome with clustered regularly interspaced short palindromic repeats (CRISPR) guide RNA drop out screens in DDX11-wildtype (WT) or DDX11-deficient cells revealed a strong enrichment of genes with functions related to sister chromatid cohesion. We confirm synthetic lethal relationships between DDX11 and the tumor suppressor cohesin subunit STAG2, which is frequently mutated in several cancer types and the kinase HASPIN. This screen highlights the importance of cohesion in cells lacking DDX11 and suggests DDX11 may be a therapeutic target for tumors with mutations in STAG2.


Subject(s)
Cell Cycle Proteins , Chromatids , DEAD-box RNA Helicases , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatids/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cohesins , Epistasis, Genetic , DNA Helicases/genetics , Cell Line
3.
Nat Commun ; 14(1): 6774, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891180

ABSTRACT

Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.


Subject(s)
Longevity , Protein Processing, Post-Translational , Male , Humans , Amino Acid Sequence , Acetylation , Longevity/genetics , Ubiquitins/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
Nature ; 600(7888): 324-328, 2021 12.
Article in English | MEDLINE | ID: mdl-34819670

ABSTRACT

Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.


Subject(s)
B-Lymphocytes , DNA Glycosylases , DNA Mismatch Repair , Immunoglobulin Class Switching , Membrane Proteins , Mutation , Neoplasm Proteins , Somatic Hypermutation, Immunoglobulin , Animals , Female , Humans , Mice , B-Lymphocytes/metabolism , CRISPR-Cas Systems , DNA Glycosylases/antagonists & inhibitors , DNA Glycosylases/metabolism , Epistasis, Genetic , HEK293 Cells , Immunoglobulin Class Switching/genetics , Immunoglobulin Switch Region/genetics , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Somatic Hypermutation, Immunoglobulin/genetics
5.
Life Sci Alliance ; 4(11)2021 11.
Article in English | MEDLINE | ID: mdl-34462321

ABSTRACT

STAG2, a component of the mitotically essential cohesin complex, is highly mutated in several different tumour types, including glioblastoma and bladder cancer. Whereas cohesin has roles in many cancer-related pathways, such as chromosome instability, DNA repair and gene expression, the complex nature of cohesin function has made it difficult to determine how STAG2 loss might either promote tumorigenesis or be leveraged therapeutically across divergent cancer types. Here, we have performed whole-genome CRISPR-Cas9 screens for STAG2-dependent genetic interactions in three distinct cellular backgrounds. Surprisingly, STAG1, the paralog of STAG2, was the only negative genetic interaction that was shared across all three backgrounds. We also uncovered a paralogous synthetic lethal mechanism behind a genetic interaction between STAG2 and the iron regulatory gene IREB2 Finally, investigation of an unusually strong context-dependent genetic interaction in HAP1 cells revealed factors that could be important for alleviating cohesin loading stress. Together, our results reveal new facets of STAG2 and cohesin function across a variety of genetic contexts.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Carcinogenesis , Cell Cycle Proteins/physiology , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/physiology , Humans , Iron Regulatory Protein 2/genetics , Iron Regulatory Protein 2/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Synthetic Lethal Mutations , Cohesins
6.
Nature ; 586(7827): 120-126, 2020 10.
Article in English | MEDLINE | ID: mdl-32968282

ABSTRACT

The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood1-3. Here, to identify a phenotypically robust core set of genes and pathways that enable cancer cells to evade killing mediated by cytotoxic T lymphocytes (CTLs), we performed genome-wide CRISPR screens across a panel of genetically diverse mouse cancer cell lines that were cultured in the presence of CTLs. We identify a core set of 182 genes across these mouse cancer models, the individual perturbation of which increases either the sensitivity or the resistance of cancer cells to CTL-mediated toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated manner in which genes and pathways act in cancer cells to orchestrate their evasion of CTLs, and shows that discrete functional modules that control the interferon response and tumour necrosis factor (TNF)-induced cytotoxicity are dominant sub-phenotypes. Our data establish a central role for genes that were previously identified as negative regulators of the type-II interferon response (for example, Ptpn2, Socs1 and Adar1) in mediating CTL evasion, and show that the lipid-droplet-related gene Fitm2 is required for maintaining cell fitness after exposure to interferon-γ (IFNγ). In addition, we identify the autophagy pathway as a conserved mediator of the evasion of CTLs by cancer cells, and show that this pathway is required to resist cytotoxicity induced by the cytokines IFNγ and TNF. Through the mapping of cytokine- and CTL-based genetic interactions, together with in vivo CRISPR screens, we show how the pleiotropic effects of autophagy control cancer-cell-intrinsic evasion of killing by CTLs and we highlight the importance of these effects within the tumour microenvironment. Collectively, these data expand our knowledge of the genetic circuits that are involved in the evasion of the immune system by cancer cells, and highlight genetic interactions that contribute to phenotypes associated with escape from killing by CTLs.


Subject(s)
Genome/genetics , Genomics , Neoplasms/genetics , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Tumor Escape/genetics , Tumor Escape/immunology , Animals , Autophagy , Cell Line, Tumor , Female , Genes, Neoplasm/genetics , Humans , Interferon-gamma/immunology , Male , Mice , NF-kappa B/metabolism , Reproducibility of Results , Signal Transduction
7.
J Vis Exp ; (151)2019 09 04.
Article in English | MEDLINE | ID: mdl-31545321

ABSTRACT

Genome editing using the CRISPR-Cas system has vastly advanced the ability to precisely edit the genomes of various organisms. In the context of mammalian cells, this technology represents a novel means to perform genome-wide genetic screens for functional genomics studies. Libraries of guide RNAs (sgRNA) targeting all open reading frames permit the facile generation of thousands of genetic perturbations in a single pool of cells that can be screened for specific phenotypes to implicate gene function and cellular processes in an unbiased and systematic way. CRISPR-Cas screens provide researchers with a simple, efficient, and inexpensive method to uncover the genetic blueprints for cellular phenotypes. Furthermore, differential analysis of screens performed in various cell lines and from different cancer types can identify genes that are contextually essential in tumor cells, revealing potential targets for specific anticancer therapies. Performing genome-wide screens in human cells can be daunting, as this involves the handling of tens of millions of cells and requires analysis of large sets of data. The details of these screens, such as cell line characterization, CRISPR library considerations, and understanding the limitations and capabilities of CRISPR technology during analysis, are often overlooked. Provided here is a detailed protocol for the successful performance of pooled genome-wide CRISPR-Cas9 based screens.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Testing/methods , Animals , Humans
8.
Cell Rep ; 27(2): 599-615.e12, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30970261

ABSTRACT

Human pluripotent stem cells (hPSCs) provide an invaluable tool for modeling diseases and hold promise for regenerative medicine. For understanding pluripotency and lineage differentiation mechanisms, a critical first step involves systematically cataloging essential genes (EGs) that are indispensable for hPSC fitness, defined as cell reproduction in this study. To map essential genetic determinants of hPSC fitness, we performed genome-scale loss-of-function screens in an inducible Cas9 H1 hPSC line cultured on feeder cells and laminin to identify EGs. Among these, we found FOXH1 and VENTX, genes that encode transcription factors previously implicated in stem cell biology, as well as an uncharacterized gene, C22orf43/DRICH1. hPSC EGs are substantially different from other human model cell lines, and EGs in hPSCs are highly context dependent with respect to different growth substrates. Our CRISPR screens establish parameters for genome-wide screens in hPSCs, which will facilitate the characterization of unappreciated genetic regulators of hPSC biology.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Expression Regulation/genetics , Genes, Essential/genetics , Pluripotent Stem Cells/metabolism , Cell Differentiation , Humans
9.
Methods Mol Biol ; 1869: 169-188, 2019.
Article in English | MEDLINE | ID: mdl-30324523

ABSTRACT

CRISPR-Cas9 technology provides a simple way to introduce targeted mutations into mammalian cells to induce loss-of-function phenotypes. The CRISPR-Cas9 system has now successfully been applied for genetic screens in many cell types, providing a powerful tool for functional genomics with manifold applications. Genome-wide guide-RNA (gRNA) libraries allow facile generation of a pool of cells, each harboring a gene knockout mutation that can be used for the study of gene function, pathway analysis or the identification of genes required for cellular fitness. Furthermore, CRISPR genetic screens can be applied for the discovery of genes whose knockout sensitizes cells to drug treatments or mediates drug resistance. Here, we provide a detailed protocol discussing the necessary steps for the successful performance of pooled CRISPR-Cas9 screens.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Genetic Testing , Genomics/methods , Lentivirus/genetics , Mammals/genetics , Animals , Cell Line , Data Analysis , Gene Knockout Techniques , Gene Library , High-Throughput Nucleotide Sequencing , RNA, Guide, Kinetoplastida/genetics
10.
BMC Med Genomics ; 11(1): 20, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29475453

ABSTRACT

BACKGROUND: Avian influenza A H5N1 virus can cause lethal disease in humans. The virus can trigger severe pneumonia and lead to acute respiratory distress syndrome. Data from clinical, in vitro and in vivo suggest that virus-induced cytokine dysregulation could be a contributory factor to the pathogenesis of human H5N1 disease. However, the precise mechanism of H5N1 infection eliciting the unique host response are still not well understood. METHODS: To obtain a better understanding of the molecular events at the earliest time points, we used RNA-Seq to quantify and compare the host mRNA and miRNA transcriptomes induced by the highly pathogenic influenza A H5N1 (A/Vietnam/3212/04) or low virulent H1N1 (A/Hong Kong/54/98) viruses in human monocyte-derived macrophages at 1-, 3-, and 6-h post infection. RESULTS: Our data reveals that two macrophage populations corresponding to M1 (classically activated) and M2 (alternatively activated) macrophage subtypes respond distinctly to H5N1 virus infection when compared to H1N1 virus or mock infection, a distinction that could not be made from previous microarray studies. When this confounding variable is considered in our statistical model, a clear set of dysregulated genes and pathways emerges specifically in H5N1 virus-infected macrophages at 6-h post infection, whilst was not found with H1N1 virus infection. Furthermore, altered expression of genes in these pathways, which have been previously implicated in viral host response, occurs specifically in the M1 subtype. We observe a significant up-regulation of genes in the RIG-I-like receptor signaling pathway. In particular, interferons, and interferon-stimulated genes are broadly affected. The negative regulators of interferon signaling, the suppressors of cytokine signaling, SOCS-1 and SOCS-3, were found to be markedly up-regulated in the initial round of H5N1 virus replication. Elevated levels of these suppressors could lead to the eventual suppression of cellular antiviral genes, contributing to pathophysiology of H5N1 virus infection. CONCLUSIONS: Our study provides important mechanistic insights into the understanding of H5N1 viral pathogenesis and the multi-faceted host immune responses. The dysregulated genes could be potential candidates as therapeutic targets for treating H5N1 disease.


Subject(s)
Gene Expression Profiling , Influenza A Virus, H5N1 Subtype/physiology , Macrophages/cytology , Macrophages/virology , Humans , Immunity, Innate/genetics , Influenza A Virus, H1N1 Subtype/physiology , Macrophages/immunology , Macrophages/metabolism , MicroRNAs/genetics
11.
G3 (Bethesda) ; 7(8): 2719-2727, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28655737

ABSTRACT

The adaptation of CRISPR/SpCas9 technology to mammalian cell lines is transforming the study of human functional genomics. Pooled libraries of CRISPR guide RNAs (gRNAs) targeting human protein-coding genes and encoded in viral vectors have been used to systematically create gene knockouts in a variety of human cancer and immortalized cell lines, in an effort to identify whether these knockouts cause cellular fitness defects. Previous work has shown that CRISPR screens are more sensitive and specific than pooled-library shRNA screens in similar assays, but currently there exists significant variability across CRISPR library designs and experimental protocols. In this study, we reanalyze 17 genome-scale knockout screens in human cell lines from three research groups, using three different genome-scale gRNA libraries. Using the Bayesian Analysis of Gene Essentiality algorithm to identify essential genes, we refine and expand our previously defined set of human core essential genes from 360 to 684 genes. We use this expanded set of reference core essential genes, CEG2, plus empirical data from six CRISPR knockout screens to guide the design of a sequence-optimized gRNA library, the Toronto KnockOut version 3.0 (TKOv3) library. We then demonstrate the high effectiveness of the library relative to reference sets of essential and nonessential genes, as well as other screens using similar approaches. The optimized TKOv3 library, combined with the CEG2 reference set, provide an efficient, highly optimized platform for performing and assessing gene knockout screens in human cell lines.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Knockout Techniques , Genetic Testing , Genome , Gene Library , Genes, Essential , HEK293 Cells , Humans , RNA, Guide, Kinetoplastida/genetics , Reference Standards
12.
G3 (Bethesda) ; 7(2): 755-773, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28087693

ABSTRACT

The Canadian beaver (Castor canadensis) is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 ×) long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 ×) and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon-gene models derived from 9805 full-length open reading frames (FL-ORFs) constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology.


Subject(s)
Genome , Rodentia/genetics , Transcriptome/genetics , Animals , Genomics , Molecular Sequence Annotation , Open Reading Frames/genetics
13.
Sci Rep ; 6: 35228, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27752041

ABSTRACT

Protein interactions play significant roles in complex diseases. We analyzed peripheral blood mononuclear cells (PBMC) transcriptome using a multi-method strategy. We constructed a tissue-specific interactome (T2Di) and identified 420 molecular signatures associated with T2D-related comorbidity and symptoms, mainly implicated in inflammation, adipogenesis, protein phosphorylation and hormonal secretion. Apart from explaining the residual associations within the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study, the T2Di signatures were enriched in pathogenic cell type-specific regulatory elements related to fetal development, immunity and expression quantitative trait loci (eQTL). The T2Di revealed a novel locus near a well-established GWAS loci AChE, in which SRRT interacts with JAZF1, a T2D-GWAS gene implicated in pancreatic function. The T2Di also included known anti-diabetic drug targets (e.g. PPARD, MAOB) and identified possible druggable targets (e.g. NCOR2, PDGFR). These T2Di signatures were validated by an independent computational method, and by expression data of pancreatic islet, muscle and liver with some of the signatures (CEBPB, SREBF1, MLST8, SRF, SRRT and SLC12A9) confirmed in PBMC from an independent cohort of 66 T2D and 66 control subjects. By combining prior knowledge and transcriptome analysis, we have constructed an interactome to explain the multi-layered regulatory pathways in T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Transcriptome/genetics , Diabetes Mellitus, Type 2/pathology , Gene Expression Profiling/methods , Genetic Predisposition to Disease , Genotype , Humans , Leukocytes, Mononuclear/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci
14.
Genome Biol Evol ; 6(3): 629-41, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24572018

ABSTRACT

The 20 canonical amino acids of the genetic code have been invariant over 3 billion years of biological evolution. Although various aminoacyl-tRNA synthetases can charge their cognate tRNAs with amino acid analogs, there has been no known displacement of any canonical amino acid from the code. Experimental departure from this universal protein alphabet comprising the canonical amino acids was first achieved in the mutants of the Bacillus subtilis QB928 strain, which after serial selection and mutagenesis led to the HR23 strain that could use 4-fluorotryptophan (4FTrp) but not canonical tryptophan (Trp) for propagation. To gain insight into this displacement of Trp from the genetic code by 4FTrp, genome sequencing was performed on LC33 (a precursor strain of HR23), HR23, and TR7 (a revertant of HR23 that regained the capacity to propagate on Trp). Compared with QB928, the negative regulator mtrB of Trp transport was found to be knocked out in LC33, HR23, and TR7, and sigma factor sigB was mutated in HR23 and TR7. Moreover, rpoBC encoding RNA polymerase subunits were mutated in three independent isolates of TR7 relative to HR23. Increased expression of sigB was also observed in HR23 and in TR7 growing under 4FTrp. These findings indicated that stabilization of the genetic code can be provided by just a small number of analog-sensitive proteins, forming an oligogenic barrier that safeguards the canonical amino acids throughout biological evolution.


Subject(s)
Amino Acids/chemistry , Genetic Code , Tryptophan/analogs & derivatives , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/genetics , Bacillus subtilis/genetics , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Mutation , Protein Conformation , RNA, Transfer/genetics , Sequence Alignment , Sequence Analysis, DNA , Sequence Analysis, RNA , Sigma Factor/genetics , Tryptophan/chemistry
15.
PLoS One ; 8(1): e53649, 2013.
Article in English | MEDLINE | ID: mdl-23341963

ABSTRACT

In recent years, PCR-based pyrosequencing of 16S rRNA genes has continuously increased our understanding of complex microbial communities in various environments of the Earth. However, there is always concern on the potential biases of diversity determination using different 16S rRNA gene primer sets and covered regions. Here, we first report how bacterial 16S rRNA gene pyrotags derived from a series of different primer sets resulted in the biased diversity metrics. In total, 14 types of pyrotags were obtained from two-end pyrosequencing of 7 amplicon pools generated by 7 primer sets paired by 1 of 4 forward primers (V1F, V3F, V5F, and V7F) and 1 of 4 reverse primers (V2R, V4R, V6R, and V9R), respectively. The results revealed that: i) the activated sludge exhibited a large bacterial diversity that represented a broad range of bacterial populations and served as a good sample in this methodology research; ii) diversity metrics highly depended on the selected primer sets and covered regions; iii) paired pyrotags obtained from two-end pyrosequencing of each short amplicon displayed different diversity metrics; iv) relative abundance analysis indicated the sequencing depth affected the determination of rare bacteria but not abundant bacteria; v) the primer set of V1F and V2R significantly underestimated the diversity of activated sludge; and vi) the primer set of V3F and V4R was highly recommended for future studies due to its advantages over other primer sets. All of these findings highlight the significance of this methodology research and offer a valuable reference for peer researchers working on microbial diversity determination.


Subject(s)
Bacteria/genetics , DNA Primers/metabolism , Genetic Variation , RNA, Ribosomal, 16S/genetics , Temperature , Bacteria/classification , Cluster Analysis , Sequence Analysis, DNA
16.
Nat Med ; 19(2): 209-16, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23291631

ABSTRACT

A better understanding of human hepatocellular carcinoma (HCC) pathogenesis at the molecular level will facilitate the discovery of tumor-initiating events. Transcriptome sequencing revealed that adenosine-to-inosine (A→I) RNA editing of AZIN1 (encoding antizyme inhibitor 1) is increased in HCC specimens. A→I editing of AZIN1 transcripts, specifically regulated by ADAR1 (encoding adenosine deaminase acting on RNA-1), results in a serine-to-glycine substitution at residue 367 of AZIN1, located in ß-strand 15 (ß15) and predicted to cause a conformational change, induced a cytoplasmic-to-nuclear translocation and conferred gain-of-function phenotypes that were manifested by augmented tumor-initiating potential and more aggressive behavior. Compared with wild-type AZIN1 protein, the edited form has a stronger affinity to antizyme, and the resultant higher AZIN1 protein stability promotes cell proliferation through the neutralization of antizyme-mediated degradation of ornithine decarboxylase (ODC) and cyclin D1 (CCND1). Collectively, A→I RNA editing of AZIN1 may be a potential driver in the pathogenesis of human cancers, particularly HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carrier Proteins/genetics , Liver Neoplasms/genetics , RNA Editing , Active Transport, Cell Nucleus , Adenosine Deaminase/physiology , Animals , Carcinoma, Hepatocellular/etiology , Cell Line, Tumor , Cell Proliferation , Cyclin D1/metabolism , Humans , Liver Neoplasms/etiology , Male , Mice , Ornithine Decarboxylase/metabolism , RNA-Binding Proteins
17.
Nat Genet ; 43(9): 860-3, 2011 Jul 10.
Article in English | MEDLINE | ID: mdl-21743468

ABSTRACT

Schizophrenia is a severe psychiatric disorder that profoundly affects cognitive, behavioral and emotional processes. The wide spectrum of symptoms and clinical variability in schizophrenia suggest a complex genetic etiology, which is consistent with the numerous loci thus far identified by linkage, copy number variation and association studies. Although schizophrenia heritability may be as high as ∼80%, the genes responsible for much of this heritability remain to be identified. Here we sequenced the exomes of 14 schizophrenia probands and their parents. We identified 15 de novo mutations (DNMs) in eight probands, which is significantly more than expected considering the previously reported DNM rate. In addition, 4 of the 15 identified DNMs are nonsense mutations, which is more than what is expected by chance. Our study supports the notion that DNMs may account for some of the heritability reported for schizophrenia while providing a list of genes possibly involved in disease pathogenesis.


Subject(s)
Exons , Mutation , Schizophrenia/genetics , DNA Mutational Analysis , Humans , Pedigree
18.
Appl Microbiol Biotechnol ; 91(4): 1215-25, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21706171

ABSTRACT

In this study, dideoxy sequencing and 454 high-throughput sequencing were used to analyze diversities of the ammonia monooxygenase (amoA) genes and the 16S rRNA genes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in six municipal wastewater treatment plants. The results showed that AOB amoA genes were quite diverse in different wastewater treatment plants while the 16S rRNA genes were relatively conserved. Based on the observed complexity of amoA and 16S rRNA genes, most of the AOB can be assigned to the Nitrosomonas genus, with Nitrosomonas ureae, Nitrosomonas oligotropha, Nitrosomonas marina, and Nitrosomonas aestuarii being the four most dominant species. From the sequences of the AOA amoA genes, most AOA observed in this study belong to the CGI.1b group, i.e., the soil lineage. The AOB amoA and 16S rRNA genes were quantified by quantitative PCR and 454 high-throughput pyrosequencing, respectively. Although the results from the two approaches show some disconcordance, they both indicated that the abundance of AOB in activated sludge was very low.


Subject(s)
Ammonia/metabolism , Archaea/classification , Archaea/metabolism , Bacteria/classification , Bacteria/metabolism , Biodiversity , Bioreactors/microbiology , Archaea/genetics , Bacteria/genetics , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases/genetics , Phylogeny , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Water Microbiology , Water Purification
19.
Water Res ; 45(15): 4390-8, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21705039

ABSTRACT

For full understanding of the microbial community in the wastewater treatment bioreactors, one of the feasible and effective ways is to investigate the massive genetic information contained in the activated sludge. In this study, high-throughput pyrosequencing was applied to analyze the 16S rRNA gene of bacteria in a laboratory-scale nitrification reactor and a full-scale wastewater treatment plant. In total, 27,458 and 26,906 effective sequence reads of the 16S rRNA gene were obtained from the Reactor and the wastewater treatment plant activated sludge samples respectively. The taxonomic complexities in the two samples were compared at phylum and genus levels. According to the pyrosequencing results, even for a laboratory-scale reactor as simple as that in this study, a small size clone library is far from enough to reflect the whole profile of the bacterial community. In addition, it was found that the commonly used informatics tool "RDP classifier" may drastically assign Nitrosomonas sequences into a wrong taxonomic unit resulting in underestimation of ammonia-oxidizing bacteria in the bioreactors. In this paper the reasons for this mistakenly assignment were analyzed and correction methods were proposed.


Subject(s)
Bacteria/genetics , Bioreactors/microbiology , Sewage/microbiology , Waste Disposal, Fluid/methods , Ammonia/analysis , Bacteria/classification , Biodegradation, Environmental , DNA, Bacterial/analysis , DNA, Bacterial/classification , DNA, Bacterial/genetics , Industrial Waste/prevention & control , Nitrification , Nitrosomonas/genetics , Phylogeny , RNA, Ribosomal, 16S/analysis , Sequence Analysis, DNA/methods , Water Purification/methods
20.
PLoS One ; 6(3): e17989, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21445317

ABSTRACT

BACKGROUND: The emergence of plasmid-mediated carbapenemases, such as NDM-1 in Enterobacteriaceae is a major public health issue. Since they mediate resistance to virtually all ß-lactam antibiotics and there is often co-resistance to other antibiotic classes, the therapeutic options for infections caused by these organisms are very limited. METHODOLOGY: We characterized the first NDM-1 producing E. coli isolate recovered in Hong Kong. The plasmid encoding the metallo-ß-lactamase gene was sequenced. PRINCIPAL FINDINGS: The plasmid, pNDM-HK readily transferred to E. coli J53 at high frequencies. It belongs to the broad host range IncL/M incompatibility group and is 88803 bp in size. Sequence alignment showed that pNDM-HK has a 55 kb backbone which shared 97% homology with pEL60 originating from the plant pathogen, Erwina amylovora in Lebanon and a 28.9 kb variable region. The plasmid backbone includes the mucAB genes mediating ultraviolet light resistance. The 28.9 kb region has a composite transposon-like structure which includes intact or truncated genes associated with resistance to ß-lactams (bla(TEM-1), bla(NDM-1), Δbla(DHA-1)), aminoglycosides (aacC2, armA), sulphonamides (sul1) and macrolides (mel, mph2). It also harbors the following mobile elements: IS26, ISCR1, tnpU, tnpAcp2, tnpD, ΔtnpATn1 and insL. Certain blocks within the 28.9 kb variable region had homology with the corresponding sequences in the widely disseminated plasmids, pCTX-M3, pMUR050 and pKP048 originating from bacteria in Poland in 1996, in Spain in 2002 and in China in 2006, respectively. SIGNIFICANCE: The genetic support of NDM-1 gene suggests that it has evolved through complex pathways. The association with broad host range plasmid and multiple mobile genetic elements explain its observed horizontal mobility in multiple bacterial taxa.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli/enzymology , beta-Lactamases/genetics , Hong Kong , Molecular Sequence Data , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...