Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 39(45): 16111-16117, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37924327

ABSTRACT

Magnesium (Mg) batteries have garnered considerable interest because of their safety characteristics and low costs. However, the practical application of Mg batteries is hindered by the slow diffusion of Mg ions in the cathode materials. In this study, we prepared NiS1.97 quantum dot composites with nitrogen doping and carbon coating (NiS1.97 QDs@NC) using a one-step sulfurization process with NiO QDs/Ni@NC as the precursor. We applied the prepared NiS1.97 QDs/Ni@NC-based cathodes to Mg batteries because of the large surface area of the quantum dot composite, which provided abundant intercalation sites. This design ensured efficient deintercalation of magnesium ions during charge-discharge processes. The fabricated NiS1.97 QDs@NC displayed a high reversible Mg storage capacity of 259.1 mAh g-1 at 100 mA g-1 and a good rate performance of 96.0 mAh g-1 at 1000 mA g-1. Quantum dot composites with large surface areas provide numerous embedded sites, which ensure effective deintercalation of Mg ions during cycling. Thus, the proposed cathode synthesis strategy is promising for Mg-ion-based energy storage systems.

2.
Chemistry ; 26(26): 5784-5788, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32073179

ABSTRACT

Covalent organic frameworks (COFs) enable precise integration of various organic building blocks into porous skeletons through topology predesign. Here, we report the first example of COFs by integrating electron withdrawing bromine group onto the skeletons for triboelectric nanogenerators (TENG). The resulting framework exhibits high surface area and good crystallinity. Thus, the bromine functionalized COF has more regular aligned π columns and arrays over the skeleton than bare COFs, which in turn significantly enhances charge transport ability. As a result, bromine functionalized COFs showed higher electrical output performance at 5 Hz with a peak value of short circuit current density of 43.6 µA and output voltage of 416 V, which is 2 and 1.3 times higher than those of bare COFs (21.6 µA and 318 V), respectively. These results demonstrated that this strategy for engineering electron withdrawing groups on the skeleton could open a new aspect of COFs for developing TENG devices.

SELECTION OF CITATIONS
SEARCH DETAIL