Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 49(17): 4867-4870, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39207984

ABSTRACT

The electroluminescence (EL) properties of InGaN-based micro-LEDs grown on a silicon substrate are investigated in this Letter to reveal the dominant mechanism in dependence on different temperatures and dimensions. The invalidation of sidewall nonradiative recombination and the impact of localization-induced carrier tunneling on the external quantum efficiency (EQE) are analyzed systematically to realize high performance silicon-based micro-LEDs. Microscopic EL mapping exhibits that the localized carriers in the silicon-grown micro-LED mainly recombine in the central region of mesa. The defects in the multiple quantum wells (MQWs) grown on the silicon substrate can lead to carrier tunneling and EQE reduction at cryogenic temperatures below 200 K, which is more conspicuous for the 30 µm device with a larger inner area ratio. The low-temperature EQE evolution can be attributed to the trade-off between localization-induced tunneling and Shockley-Read-Hall (SRH) recombination.

SELECTION OF CITATIONS
SEARCH DETAIL