Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; : 174642, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992380

ABSTRACT

Cognitive efficiency, characterized by the rapid and accurate processing of information, significantly enhances work and learning outcomes. This efficiency manifests in improved time management, decision-making, learning capabilities, and creativity. While the influence of thermal, acoustic, and lighting conditions on cognitive performance has been extensively studied, the role of olfactory stimuli remains underexplored. Olfactory perception, distinguished by its intensity, speed of perception, and the breadth of stimuli, plays a pivotal role in cognitive efficiency. This review investigates the mechanisms through which odor environments influence cognitive performance. We analyze how odor environments can affect cognitive efficiency through two different scenarios (work and sleep) and pathways (direct and indirect effects). Current research, which mainly focuses on the interplay between odors, emotional responses, and cognitive efficiency through both subjective and objective measures, is thoroughly analyzed. We highlight existing research gaps and suggest future directions for investigating the influence of odor environments on cognitive efficiency. This review aims to establish a theoretical basis for managing and leveraging odor environments in workplace settings.

2.
Sci Total Environ ; 926: 171939, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38527543

ABSTRACT

Source localization is significant for mitigating indoor air pollution and safeguarding the well-being and safety of occupants. While most study focuses on mechanical ventilation and static sources, this study explores the less-explored domain of locating time-varying sources in naturally ventilated spaces. We have developed an innovative 3D localization system that adjusts to varying heights, significantly enhancing capabilities beyond traditional fixed-height 2D systems. To ensure consistency in experimental conditions, we conducted comparative analyses of 2D and 3D methods, using a swinging fan to simulate natural ventilation. Our findings reveal a substantial disparity in performance: the 2D method had a success rate below 46.7% in cases of height mismatches, while our 3D methods consistently achieved success rates above 66.7%, demonstrating their superior effectiveness in complex environments. Furthermore, we validated the 3D strategies in real naturally ventilated settings, confirming their wider applicability. This research extends the scope of indoor source localization and offers valuable insights and strategies for more effective pollution control.


Subject(s)
Air Pollution, Indoor , Robotics , Smell , Ventilation/methods , Air Pollution, Indoor/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...