Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Future Microbiol ; 15: 1697-1712, 2020 12.
Article in English | MEDLINE | ID: mdl-33350865

ABSTRACT

Aim: The resident bacterial microbiome may shape and protect the health of vertebrate host. An array of molecules secreted by microbiome may contribute to the ecological stability of the microbiome itself. Material & methods: ELISA, radioactivity, immunofluorescence and cytokines measurements were used to observe the bioactivity and stability of colicin Ia level in oviparous and viviparous animal circulation. Results: Colicin Ia, a protein antimicrobial produced by Escherichia coli, is not present in animals at birth, but increases in concentration with the establishment of a stable gut microbiome and drops when the microbiome is experimentally disrupted. Colicin introduced in vivo is transported to tissues at concentrations able to prevent or eliminate bacterial infection. Conclusion: Our findings suggest an unexpected benefit provided by the presence of a resident microbiome in the form of active, circulating, bacterially-synthesized antimicrobial molecules.


Subject(s)
Bacteria/drug effects , Colicins/pharmacology , Escherichia coli/metabolism , Gastrointestinal Microbiome , Vertebrates/blood , Animals , Bacteria/classification , Bacteria/isolation & purification , Cattle , Colicins/blood , Colicins/metabolism , Escherichia coli/chemistry , Feces/microbiology , Humans , Rabbits , Vertebrates/microbiology
2.
Sheng Li Xue Bao ; 65(4): 417-32, 2013 Aug 25.
Article in English | MEDLINE | ID: mdl-23963074

ABSTRACT

Fungal pathogens represent major problems for human health and agriculture. As eukaryotic organisms, fungi share some important features with mammalian cells. Therefore, current anti-fungal antibiotics often can not distinguish between fungi and mammalian cells, resulting in serious side effects in mammalian cells. Accordingly, there is strong impetus to develop antifungal alternatives that are both safe and effective. The E1 family of colicin are channel-forming bacteriocins produced by Escherichia coli, which are bactericidal only to E. coli and related species. To target the channel-forming domain of colicin to fungal cell membrane, we engineered a sexual mating pheromone of Candida albicans, α-factor pheromone to colicin Ia. A peptide was constructed consisting of an α mating pheromone of C. albicans fused to the channel-forming domain of colicin Ia to create a new fusion protein, pheromonicin-CA (PMC-CA). Indirect immunolabeling showed that the PMC-CA bound to fungal cells and inhibited growth in the laboratory and field. In the field, the protective activity of pheromonicin against rice blast disease was significantly greater, on a molar basis, than that of triazoles, tricyclazole or isoprothiolane. These results suggest that fusion peptides may be of value as fungicidal agents under agricultural conditions.


Subject(s)
Colicins/chemistry , Fungicides, Industrial/chemistry , Peptides/chemistry , Candida albicans/chemistry , Mating Factor , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...