Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 20(19)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31623350

ABSTRACT

Leaf angle is a key parameter that determines plant architecture and crop yield. Hormonal crosstalk involving brassinosteroid (BR) plays an essential role in leaf angle regulation in cereals. In this study, we investigated whether abscisic acid (ABA), an important stress-responsive hormone, co-regulates lamina joint inclination together with BR, and, if so, what the underlying mechanism is. Therefore, lamina joint inclination assay and RNA sequencing (RNA-Seq) analysis were performed here. ABA antagonizes the promotive effect of BR on leaf angle. Hundreds of genes responsive to both hormones that are involved in leaf-angle determination were identified by RNA-Seq and the expression of a gene subset was confirmed using quantitative real-time PCR (qRT-PCR). Results from analysis of rice mutants or transgenic lines affected in BR biosynthesis and signaling indicated that ABA antagonizes the effect of BR on lamina joint inclination by targeting the BR biosynthesis gene D11 and BR signaling genes GSK2 and DLT, thus forming a multi-level regulatory module that controls leaf angle in rice. Taken together, our findings demonstrate that BR and ABA antagonistically regulate lamina joint inclination in rice, thus contributing to the elucidation of the complex hormonal interaction network that optimizes leaf angle in rice.


Subject(s)
Abscisic Acid/pharmacology , Brassinosteroids/biosynthesis , Oryza/drug effects , Oryza/physiology , Signal Transduction , Analysis of Variance , Computational Biology , Gene Expression Profiling , Phenotype , Plant Growth Regulators/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...