Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(4): e15111, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37095925

ABSTRACT

The mushroom industry produces a large amount of spent mushroom substrate (SMS), which requires a large geographical footprint and causes pollution. Vermicomposting is a low-cost technology for its value in recycling of organic wastes and production of beneficial organic fertilizers. In this study, the changes of physicochemical properties was characterized during vermicomposting of Pleurotus eryngii SMS with cow dung (CD) as amendment. The efficiency and possible mechanisms of vermicompost suppressing disease induced by Meloidogyne incognita was also investigated. Six combinations with different ratios of SMS and cow dung (CD) was included in the vermicomposting using Eisenia fetida. Effect of vermicompost against disease induced by M. incognita on tobacco was conducted under greenhouse condition. And the possible mechanisms of vermicompost suppressing M. incognita was investigated by evaluated the species diversity of nematode-trapping fungi (NTF) in soil, and the defense response enzymes in tobacco. The combination of 65% SMS +35% CD was more suitable for vermicomposting, in which the highest vermicompost production (57%) and earthworm biomass increment (268%) were achieved. Additionally, the reduction in pH, total organic carbon, carbon: nitrogen ratio, and the pronounced elevation in four overall nutrient status were also observed. Soil amended with vermicompost (100:1 w/w) showed 61% control efficiency against nematode disease caused by M. incognita on tobacco, which significantly higher than that of the normal compost (24%). Comparing to the normal compost, the potential mechanism of vermicompost suppressing M. incognita could be rely on promoting species diversity of NTF in soil and enhancing the activities of the defense response enzymes in tobacco plant. Our findings indicate that vermicomposting is a promising technology for recycling of P. eryngii SMS, and the resulting vermicompost as organic fertilizer can be sued for management of the diseases caused by root-knot nematodes. This study establish a sustainable avenue for P. eryngii SMS disposal and a practical manner for controlling pathogens.

2.
Can J Microbiol ; 66(5): 359-367, 2020 May.
Article in English | MEDLINE | ID: mdl-32053399

ABSTRACT

The magnitude of the impact of altitude gradient on microbial community and diversity has been studied in recent decades. Whereas bacteria have been the focus of most studies, fungi have been given relatively less attention. As a vital part of the macro- and microscopic ecosystem, rhizosphere fungi play a key role in organic matter decomposition and relative abundance of plant species and have an impact on plant growth and development. Using Duchesnea indica as the host plant, we examined the rhizosphere soil fungal community patterns across the altitude gradient in 15 sites of Yunnan province by sequencing the fungal ITS2 region with the Illumina MiSeq platform. We determined the fungal community composition and structure. We found that, surprisingly, rhizosphere soil fungal diversity of D. indica increased with altitudinal gradient. There was a slight difference in diversity between samples from high- and medium-altitude sites, with medium-altitude sites having the greater diversity. Furthermore, the rhizosphere soil fungal community composition and structure kept changing along the altitudinal gradient. Taxonomic results showed that the extent of phylum diversity was greatest at high-altitude sites, with Ascomycota, Basidiomycota, Zygomycota, and Glomeromycota as the most dominant fungal phyla.


Subject(s)
Altitude , Fungi/isolation & purification , Plant Roots/microbiology , Rosaceae/microbiology , Soil Microbiology , Biodiversity , China , Ecosystem , Mycobiome , Rhizosphere , Soil/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...