Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39005307

ABSTRACT

Much is known regarding the major white matter pathways connecting the right and left temporal lobes, which project through the posterior corpus callosum, the anterior commissure, and the dorsal hippocampal commissure. However, details about the spatial location of these tracts are unclear, including their exact course and proximity to cortical and subcortical structures, the spatial relations between corpus callosum and anterior commissure projections, and the caudal extent of transcallosal connections within the splenium. We present an atlas of these tracts derived from high angular resolution diffusion tractography maps, providing improved visualization of the spatial relationships of these tracts. The data show several new details, including branching of the transcallosal pathway into medial and lateral divisions, projections of the transcallosal pathway into the external capsule and claustrum, complex patterns of overlap and interdigitation of the transcallosal and anterior commissure tracts, distinct dorsal and ventral regions of the splenium with high tract densities, and absence of temporal lobe projections in the caudal third of the splenium. Intersection of individual tract probability maps with individual cortical surfaces were used to identify likely regions with relatively higher cortical termination densities. These data should be useful for planning surgical approaches involving the temporal lobe and for developing functional-anatomical models of processes that depend on interhemispheric temporal lobe integration, including speech perception, semantic memory, and social cognition. Highlights: Interhemispheric connections of the human temporal lobes were visualized using high angular resolution diffusion tensor imaging tractography.Results are displayed on serial orthogonal sections to reveal detailed spatial relationships.Corpus callosum projections through the splenium form distinct dorsal and ventral bundles and are absent from the caudal splenium.The transcallosal pathway consists of distinct medial and lateral divisions.The results reveal projections to the external capsule and claustrum not previously described.Transcallosal and anterior commissural pathways show complex patterns of overlap and interdigitation.Surface mapping revealed areas with relatively high density of projections to the cortical surface.

2.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38863113

ABSTRACT

Neuropsychological and neuroimaging studies provide evidence for a degree of category-related organization of conceptual knowledge in the brain. Some of this evidence indicates that body part concepts are distinctly represented from other categories; yet, the neural correlates and mechanisms underlying these dissociations are unclear. We expand on the limited prior data by measuring functional magnetic resonance imaging responses induced by body part words and performing a series of analyses investigating the cortical representation of this semantic category. Across voxel-level contrasts, pattern classification, representational similarity analysis, and vertex-wise encoding analyses, we find converging evidence that the posterior middle temporal gyrus, the supramarginal gyrus, and the ventral premotor cortex in the left hemisphere play important roles in the preferential representation of this category compared to other concrete objects.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Female , Male , Brain Mapping/methods , Adult , Young Adult , Concept Formation/physiology , Brain/physiology , Brain/diagnostic imaging , Semantics
3.
J Neurosci ; 42(37): 7121-7130, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35940877

ABSTRACT

Neuroimaging, neuropsychological, and psychophysical evidence indicate that concept retrieval selectively engages specific sensory and motor brain systems involved in the acquisition of the retrieved concept. However, it remains unclear which supramodal cortical regions contribute to this process and what kind of information they represent. Here, we used representational similarity analysis of two large fMRI datasets with a searchlight approach to generate a detailed map of human brain regions where the semantic similarity structure across individual lexical concepts can be reliably detected. We hypothesized that heteromodal cortical areas typically associated with the default mode network encode multimodal experiential information about concepts, consistent with their proposed role as cortical integration hubs. In two studies involving different sets of concepts and different participants (both sexes), we found a distributed, bihemispheric network engaged in concept representation, composed of high-level association areas in the anterior, lateral, and ventral temporal lobe; inferior parietal lobule; posterior cingulate gyrus and precuneus; and medial, dorsal, ventrolateral, and orbital prefrontal cortex. In both studies, a multimodal model combining sensory, motor, affective, and other types of experiential information explained significant variance in the neural similarity structure observed in these regions that was not explained by unimodal experiential models or by distributional semantics (i.e., word2vec similarity). These results indicate that during concept retrieval, lexical concepts are represented across a vast expanse of high-level cortical regions, especially in the areas that make up the default mode network, and that these regions encode multimodal experiential information.SIGNIFICANCE STATEMENT Conceptual knowledge includes information acquired through various modalities of experience, such as visual, auditory, tactile, and emotional information. We investigated which brain regions encode mental representations that combine information from multiple modalities when participants think about the meaning of a word. We found that such representations are encoded across a widely distributed network of cortical areas in both hemispheres, including temporal, parietal, limbic, and prefrontal association areas. Several areas not traditionally associated with semantic cognition were also implicated. Our results indicate that the retrieval of conceptual knowledge during word comprehension relies on a much larger portion of the cerebral cortex than previously thought and that multimodal experiential information is represented throughout the entire network.


Subject(s)
Brain Mapping , Semantics , Comprehension , Female , Humans , Magnetic Resonance Imaging , Male , Parietal Lobe
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35115397

ABSTRACT

The nature of the representational code underlying conceptual knowledge remains a major unsolved problem in cognitive neuroscience. We assessed the extent to which different representational systems contribute to the instantiation of lexical concepts in high-level, heteromodal cortical areas previously associated with semantic cognition. We found that lexical semantic information can be reliably decoded from a wide range of heteromodal cortical areas in the frontal, parietal, and temporal cortex. In most of these areas, we found a striking advantage for experience-based representational structures (i.e., encoding information about sensory-motor, affective, and other features of phenomenal experience), with little evidence for independent taxonomic or distributional organization. These results were found independently for object and event concepts. Our findings indicate that concept representations in the heteromodal cortex are based, at least in part, on experiential information. They also reveal that, in most heteromodal areas, event concepts have more heterogeneous representations (i.e., they are more easily decodable) than object concepts and that other areas beyond the traditional "semantic hubs" contribute to semantic cognition, particularly the posterior cingulate gyrus and the precuneus.


Subject(s)
Concept Formation/physiology , Temporal Lobe/physiology , Adult , Brain Mapping/methods , Cognition/physiology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Parietal Lobe/physiology , Semantics , Young Adult
5.
Epilepsia ; 61(9): 1939-1948, 2020 09.
Article in English | MEDLINE | ID: mdl-32780878

ABSTRACT

OBJECTIVE: To define left temporal lobe regions where surgical resection produces a persistent postoperative decline in naming visual objects. METHODS: Pre- and postoperative brain magnetic resonance imaging data and picture naming (Boston Naming Test) scores were obtained prospectively from 59 people with drug-resistant left temporal lobe epilepsy. All patients had left hemisphere language dominance at baseline and underwent surgical resection or ablation in the left temporal lobe. Postoperative naming assessment occurred approximately 7 months after surgery. Surgical lesions were mapped to a standard template, and the relationship between presence or absence of a lesion and the degree of naming decline was tested at each template voxel while controlling for effects of overall lesion size. RESULTS: Patients declined by an average of 15% in their naming score, with wide variation across individuals. Decline was significantly related to damage in a cluster of voxels in the ventral temporal lobe, located mainly in the fusiform gyrus approximately 4-6 cm posterior to the temporal tip. Extent of damage to this region explained roughly 50% of the variance in outcome. Picture naming decline was not related to hippocampal or temporal pole damage. SIGNIFICANCE: The results provide the first statistical map relating lesion location in left temporal lobe epilepsy surgery to picture naming decline, and they support previous observations of transient naming deficits from electrical stimulation in the basal temporal cortex. The critical lesion is relatively posterior and could be avoided in many patients undergoing left temporal lobe surgery for intractable epilepsy.


Subject(s)
Anomia/physiopathology , Anterior Temporal Lobectomy/methods , Drug Resistant Epilepsy/surgery , Epilepsy, Temporal Lobe/surgery , Hippocampus/surgery , Postoperative Complications/physiopathology , Temporal Lobe/surgery , Adult , Anomia/etiology , Anterior Temporal Lobectomy/adverse effects , Brain Mapping , Female , Functional Neuroimaging , Hippocampus/diagnostic imaging , Hippocampus/physiology , Humans , Language Tests , Magnetic Resonance Imaging , Male , Middle Aged , Postoperative Complications/etiology , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Young Adult
6.
Hippocampus ; 28(5): 358-372, 2018 05.
Article in English | MEDLINE | ID: mdl-29473979

ABSTRACT

Type 2 diabetes mellitus (T2DM) is an important risk factor for Alzheimer's disease (AD). Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) have been identified to be effective in T2DM treatment and neuroprotection. In this study, we further explored the effects of a novel unimolecular GLP-1/GIP/Gcg triagonist on the cognitive behavior and cerebral pathology in the 7-month-old triple transgenic mouse model of AD (3xTg-AD), and investigated its possible electrophysiological and molecular mechanisms. After chronic administration of the GLP-1/GIP/Gcg triagonist (10 nmol/kg bodyweight, once daily, i.p.) for 30 days, open field, Y maze and Morris water maze tests were performed, followed by in vivo electrophysiological recording, immunofluorescence and Western blotting experiments. We found that the chronic treatment with the triagonist could improve long-term spatial memory of 3xTg-AD mice in Morris water maze, as well as the working memory in Y maze task. The triagonist also alleviated the suppression of long-term potentiation (LTP) in the CA1 region of hippocampus. In addition, the triagonist significantly reduced hippocampal pathological damages, including amyloid-ß (Aß) and phosphorylated tau aggregates, and upregulated the expression levels of S133 p-CREB, T286 p-CAMKII and S9 p-GSK3ß in the hippocampus of the 3xTg-AD mice. These results demonstrate for the first time that the novel GLP-1/GIP/Gcg triagonist is efficacious in ameliorating cognitive deficits and pathological damages of 3xTg-AD mice, suggesting that the triagonist might be potentially beneficial in the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Cognition Disorders/drug therapy , Glucagon-Like Peptide 1/agonists , Neuroprotective Agents/pharmacology , Receptors, Gastrointestinal Hormone/agonists , Receptors, Glucagon/agonists , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Cognition Disorders/etiology , Cognition Disorders/pathology , Disease Models, Animal , Female , Gene Expression/drug effects , Hippocampus/drug effects , Hippocampus/pathology , Long-Term Potentiation/drug effects , Male , Memory/drug effects , Mice, Inbred C57BL , Mice, Transgenic , Nootropic Agents/pharmacology
7.
J Neurosci ; 37(11): 3030-3044, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28209735

ABSTRACT

Exchange protein directly activated by cAMP (Epac) is a direct effector for the ubiquitous second messenger cAMP. Epac activates the phospholipase Cε (PLCε) pathway. PLCß has been linked to the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Here, we report that Epac facilitates endocannabinoid-mediated retrograde synaptic depression through activation of PLCε. Intracellular loading of a selective Epac agonist 8-CPT-2Me-cAMP into ventral tegmental area (VTA) dopamine neurons enabled previously ineffective stimuli to induce depolarization-induced suppression of inhibition (DSI) and long-term depression of IPSCs (I-LTD) in the VTA. DSI and I-LTD are mediated by 2-AG since they were blocked by a diacylglycerol lipase inhibitor. The effects of 8-CPT-2Me-cAMP on DSI and I-LTD were absent in Epac2 and PLCε knock-out mice, but remained intact in Epac1 knock-out mice. These results identify a novel mechanism for on-demand synthesis of retrograde signaling 2-AG by the Epac2-PLCε pathway. We investigated the functional significance of Epac2-PLCε-2-AG signaling in regulating inhibitory synaptic plasticity in VTA dopamine neurons induced by in vivo cocaine exposure. We showed that cocaine place conditioning led to a decrease in the frequency and amplitude of spontaneous IPSCs and an increase in action potential firing in wild-type mice, but not in Epac2 or PLCε knock-out mice. Together, these results indicate that the Epac2-PLCε-2-AG signaling cascade contributes to cocaine-induced disinhibition of VTA dopamine neurons.SIGNIFICANCE STATEMENT 2-arachidonoylglycerol (2-AG) is an endogenous cannabinoid that depresses synaptic transmission through stimulation of CB1 receptors. Among the six isoforms of phospholipase C (PLC; PLCß, PLCγ, PLCδ, PLCε, PLCζ, PLCη), only PLCß has been linked to 2-AG synthesis. Here we demonstrate that 8-CPT-2Me-cAMP, a selective agonist of the cAMP sensor protein Epac, enhances 2-AG-mediated synaptic depression in ventral tegmental area (VTA) dopamine neurons via activation of PLCε. These results identify a novel mechanism for 2-AG synthesis via activation of the Epac-PLCε pathway. Furthermore, we show that cocaine-induced conditioned place preference and disinhibition of VTA dopamine neurons were impaired in mice lacking Epac or PLCε. Thus, the Epac-PLCε signaling pathway contributes to cocaine-induced disinhibition of VTA dopamine neurons and formation of drug-associated memories.


Subject(s)
Cocaine/administration & dosage , Dopaminergic Neurons/physiology , Endocannabinoids/metabolism , Neural Inhibition/physiology , Phosphoinositide Phospholipase C/metabolism , Ventral Tegmental Area/physiology , Animals , Dopaminergic Neurons/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Inhibition/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Ventral Tegmental Area/cytology , Ventral Tegmental Area/drug effects
8.
Article in Chinese | MEDLINE | ID: mdl-27255034

ABSTRACT

OBJECTIVE: The present study investigated the effects of rapamycin on Aß1-42-induced deficits in working memory and synaptic plasticity. METHODS: After bilateral hippocampal injection of Aß1-42 and rapamycinin rats, spontaneous alternation in Y-maze and in vivo hippocampal long-term potentiation (LTP) of rats were recorded. All data were analized by two-way repeated measures analysis of variance (ANOVA). RESULTS: (Hippocampal injection of Aß1-42 alone impaired working memory of rats; (2) Rapamycin did not affect working memory of rats, but alleviated Aß1-42-induced working memory deficits, compared with Aß1-42 alone group; (Aß1-42 remarkably suppressed in vivo hippocampal LTP of fEPSPs in the CA1 region; (4) Pretreatment with rapamycin prevented Aß1-42-induced suppression of LTP. CONCLUSION: These data indicates that rapamycin could protect against Aß1-42-induced impairments in working memory and synaptic plasticity in rats.


Subject(s)
Amyloid beta-Peptides/adverse effects , Hippocampus/drug effects , Memory, Short-Term/drug effects , Neuronal Plasticity/drug effects , Peptide Fragments/adverse effects , Sirolimus/pharmacology , Animals , Long-Term Potentiation , Maze Learning , Rats
9.
Sheng Li Xue Bao ; 68(3): 265-75, 2016 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-27350199

ABSTRACT

The accumulation and neurotoxicity of amyloid ß protein (Aß) in the brain is one of major pathological hallmarks of Alzheimer's disease (AD). The effective drugs against Aß have been still deficient up to now. According to a most recent study, (D-Ser2) Oxm, a new antidiabetic drug, not only improves the disorders in plasma glucose and insulin in type 2 diabetes mellitus (T2DM) rats, but also exerts positive effects on hippocampal neurogenesis and synaptogenesis. However, it is still unclear whether (D-Ser2)Oxm can directly protect cultured neurons against Aß1-42-induced cytotoxicity. In the present study, we investigated the neuroprotective effects of (D-Ser2)Oxm on the cultured primary hippocampal neurons by testing the cell viability, neuronal apoptosis, mitochondrial membrane potential and intracellular calcium concentration. The results showed that treatment with (D-Ser2)Oxm effectively reversed Aß1-42-induced decline in cell viability (P < 0.001), and this protective effect could be inhibited by the pretreatment with exendin(9-39), a GLP-1 receptor blocker. (D-Ser2)Oxm treatment also decreased Aß1-42-induced neuronal early apoptosis and down-regulated apoptotic protein caspase3. Meantime, (D-Ser2)Oxm treatment inhibited Aß1-42-induced [Ca(2+)]i elevation, mitochondrial membrane potential depolarization, and glycogen synthase kinase-3ß (GSK3ß) activation. These results suggest that (D-Ser2)Oxm can protect hippocampal neurons against Aß1-42-induced cytotoxicity and this effect may be related to activation of GLP-1 receptors, regulation of intracellular calcium homeostasis and stabilization of mitochondrial membrane potential.


Subject(s)
Diabetes Mellitus, Type 2 , Amyloid beta-Peptides , Animals , Calcium , Cell Survival , Glucagon-Like Peptide-1 Receptor , Hippocampus , Hypoglycemic Agents , Insulin , Membrane Potential, Mitochondrial , Neurogenesis , Neurons , Neuroprotective Agents , Rats
10.
Horm Behav ; 83: 83-92, 2016 07.
Article in English | MEDLINE | ID: mdl-27222435

ABSTRACT

Alzheimer's disease (AD) is an age-related mental disorder characterized by progressive loss of memory and multiple cognitive impairments. The overproduction and aggregation of Amyloid ß protein (Aß) in the brain, especially in the hippocampus, are closely involved in the memory loss in the patients with AD. Accumulating evidence indicates that the Aß-induced imbalance of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) in the brain plays an important role in the AD pathogenesis and progression. The level of DHEA is elevated, while DHEAS is dramatically decreased in the AD brain. The present study tried to restore the balance between DHEA and DHEAS by using a non-steroidal sulfatase inhibitor DU-14, which increases endogenous DHEAS through preventing DHEAS converted back into DHEA. We found that: (1) DU-14 effectively attenuated the Aß1-42-induced cognitive deficits in spatial learning and memory of rats in Morris water maze test; (2) DU-14 prevented Aß1-42-induced decrease in the cholinergic theta rhythm of hippocampal local field potential (LFP) in the CA1 region; (3) DU-14 protected hippocampal synaptic plasticity against Aß1-42-induced suppression of long term potentiation (LTP). These results provide evidence for the neuroprotective action of DU-14 against neurotoxic Aß, suggesting that up-regulation of endogenous DHEAS by DU-14 could be beneficial to the alleviation of Aß-induced impairments in spatial memory and synaptic plasticity.


Subject(s)
Amyloid beta-Peptides/toxicity , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Spatial Memory/drug effects , Steryl-Sulfatase/antagonists & inhibitors , Tyramine/analogs & derivatives , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Cognition Disorders/metabolism , Cognition Disorders/prevention & control , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Male , Maze Learning/drug effects , Memory Disorders/prevention & control , Rats , Rats, Sprague-Dawley , Tyramine/pharmacology , Up-Regulation/drug effects
11.
J Neurosci ; 36(17): 4802-15, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27122037

ABSTRACT

UNLABELLED: Exchange protein directly activated by cAMP (Epac) and protein kinase A (PKA) are intracellular receptors for cAMP. Although PKA and its downstream effectors have been studied extensively in the context of drug addiction, whether and how Epac regulates cellular and behavioral effects of drugs of abuse remain essentially unknown. Epac is known to regulate AMPA receptor (AMPAR) trafficking. Previous studies have shown that a single cocaine exposure in vivo leads to an increase in GluA2-lacking AMPARs in dopamine neurons of the ventral tegmental area (VTA). We tested the hypothesis that Epac mediates cocaine-induced changes in AMPAR subunit composition in the VTA. We report that a single cocaine injection in vivo in wild-type mice leads to inward rectification of EPSCs and renders EPSCs sensitive to a GluA2-lacking AMPAR blocker in VTA dopamine neurons. The cocaine-induced increase in GluA2-lacking AMPARs was absent in Epac2-deficient mice but not in Epac1-deficient mice. In addition, activation of Epac with the selective Epac agonist 8-CPT-2Me-cAMP (8-CPT) recapitulated the cocaine-induced increase in GluA2-lacking AMPARs, and the effects of 8-CPT were mediated by Epac2. We also show that conditioned place preference to cocaine was impaired in Epac2-deficient mice and in mice in which Epac2 was knocked down in the VTA but was not significantly altered in Epac1-deficient mice. Together, these results suggest that Epac2 is critically involved in the cocaine-induced change in AMPAR subunit composition and drug-cue associative learning. SIGNIFICANCE STATEMENT: Addictive drugs, such as cocaine, induce long-lasting adaptions in the reward circuits of the brain. A single intraperitoneal injection of cocaine leads to changes in the composition and property of the AMPAR that carries excitatory inputs to dopamine neurons. Here, we provide evidence that exchange protein directly activated by cAMP (Epac), a cAMP sensor protein, is required for the cocaine-induced changes of the AMPAR. We found that the effects of cocaine were mimicked by activation of Epac but were blocked by genetic deletion of Epac. Furthermore, cocaine-cue associative learning was impaired in mice lacking Epac. These findings uncovered a critical role of Epac in regulating the cellular and behavioral actions of cocaine.


Subject(s)
Cocaine/pharmacology , Receptors, AMPA/drug effects , Ventral Tegmental Area/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/analogs & derivatives , Animals , Cyclic AMP/analogs & derivatives , Cyclic AMP-Dependent Protein Kinases/metabolism , Dopamine/metabolism , Excitatory Postsynaptic Potentials/physiology , Female , Male , Mice , Mice, Knockout , Neurons/metabolism , Patch-Clamp Techniques/methods , Reward , Synapses , Thionucleotides , Ventral Tegmental Area/cytology
12.
Horm Behav ; 73: 125-30, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26135065

ABSTRACT

ß-Amyloid (Aß) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aß in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aß-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1µg) effectively alleviated Aß1-42 (20µg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aß1-42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aß-induced deficits in learning and memory and the maintenance of L-LTP.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Hippocampus/drug effects , Leptin/pharmacology , Long-Term Potentiation/drug effects , Neuroprotective Agents/pharmacology , Spatial Memory/drug effects , Amyloid beta-Peptides/metabolism , Animals , Hippocampus/physiology , Male , Maze Learning/drug effects , Memory Disorders/physiopathology , Memory Disorders/prevention & control , Memory, Short-Term/drug effects , Neuronal Plasticity/drug effects , Peptide Fragments/pharmacology , Rats , Rats, Sprague-Dawley
13.
Hippocampus ; 25(3): 363-72, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25332198

ABSTRACT

Amyloid ß peptide (Aß) has been thought to be neurotoxic and responsible for the impairment of learning and memory in Alzheimer's disease (AD). Humanin (HN), a 24 amino acid polypeptide first identified from the unaffected occipital lobe of an AD patient, is believed to be neuroprotective against the AD-related neurotoxicity. In this study, we investigated the neuroprotective effects of Colivelin (CLN), a novel HN derivative, against Aß by using behavioral test, in vivo electrophysiological recording, and intracellular calcium imaging. Our results showed that intrahippocampal injection of CLN (0.2 nmol) effectively prevented Aß25-35 (4 nmol)-induced deficits in spatial learning and memory of rats in Morris water maze test; the suppression of in vivo hippocampal long term potentiation (LTP) by Aß25-35 was nearly completely prevented by CLN; in addition, CLN pretreatment also effectively inhibited Aß25-35-induced calcium overload in primary cultured hippocampal neurons. These results indicate that CLN has significant neuroprotective properties against Aß, and CLN may holds great promise for the treatment and prevention of AD.


Subject(s)
Calcium/metabolism , Homeostasis/drug effects , Intracellular Signaling Peptides and Proteins/therapeutic use , Memory Disorders/drug therapy , Neuronal Plasticity/drug effects , Amyloid beta-Peptides/toxicity , Animals , Cells, Cultured , Hippocampus/cytology , Long-Term Potentiation/drug effects , Maze Learning/drug effects , Memory Disorders/chemically induced , Neurons/drug effects , Peptide Fragments/toxicity , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...