Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0283728, 2024.
Article in English | MEDLINE | ID: mdl-38709810

ABSTRACT

BACKGROUND: Traditional Chinese medicine (TCM) has been garnering ever-increasing worldwide attention as the herbal extracts and formulas prove to have potency against disease. Fuzhengjiedu San (FZJDS), has been extensively used to treat viral diseases in pigs, but its bioactive components and therapeutic mechanisms remain unclear. METHODS: In this study, we conducted an integrative approach of network pharmacology and experimental study to elucidate the mechanisms underlying FZJDS's action in treating porcine reproductive and respiratory syndrome virus (PRRSV). We constructed PPI network and screened the core targets according to their degree of value. GO and KEGG enrichment analyses were also carried out to identify relevant pathways. Lastly, qRT-PCR, flow cytometry and western blotting were used to determine the effects of FZJDS on core gene expression in PRRSV-infected monkey kidney (MARC-145) cells to further expand the results of network pharmacological analysis. RESULTS: Network pharmacology data revealed that quercetin, kaempferol, and luteolin were the main active compounds of FZJDS. The phosphatidylinositol-3-kinase (PI3K)/Akt pathway was deemed the cellular target as it has been shown to participate most in PRRSV replication and other PRRSV-related functions. Analysis by qRT-PCR and western blotting demonstrated that FZJDS significantly reduced the expression of P65, JNK, TLR4, N protein, Bax and IĸBa in MARC-145 cells, and increased the expression of Bcl-2, consistent with network pharmacology results. This study provides that FZJDS has significant antiviral activity through its effects on the PI3K/AKT signaling pathway. CONCLUSION: We conclude that FZJDS is a promising candidate herbal formulation for treating PRRSV and deserves further investigation.


Subject(s)
Drugs, Chinese Herbal , Phosphatidylinositol 3-Kinases , Porcine respiratory and reproductive syndrome virus , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cell Line , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Kaempferols/pharmacology , Luteolin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/drug effects , Porcine respiratory and reproductive syndrome virus/physiology , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/pharmacology , Quercetin/analogs & derivatives , Signal Transduction/drug effects , Swine , Virus Replication/drug effects
2.
PLoS One ; 19(4): e0299234, 2024.
Article in English | MEDLINE | ID: mdl-38630770

ABSTRACT

OBJECTIVES: The goal of this investigation was to identify the main compounds and the pharmacological mechanism of the traditional Chinese medicine formulation, Gong Ying San (GYS), by infrared spectral absorption characteristics, metabolomics, network pharmacology, and molecular-docking analysis for mastitis. The antibacterial and antioxidant activities were determined in vitro. METHODS: The chemical constituents of GYS were detected by ultra-high-performance liquid chromatography Q-extractive mass spectrometry (UHPLC-QE-MS). Related compounds were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://tcmspw.com/tcmsp.php) and the Encyclopedia of Traditional Chinese Medicine (ETCM, http://www.tcmip.cn/ETCM/index.php/Home/) databases; genes associated with mastitis were identified in DisGENT. A protein-protein interaction (PPI) network was generated using STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment screening was conducted using the R module. Molecular-docking analyses were performed with the AutoDockTools V1.5.6. RESULTS: Fifty-four possible compounds in GYS with forty likely targets were found. The compound-target-network analysis showed that five of the ingredients, quercetin, luteolin, kaempferol, beta-sitosterol, and stigmasterol, had degree values >41.6, and the genes TNF, IL-6, IL-1ß, ICAM1, CXCL8, CRP, IFNG, TP53, IL-2, and TGFB1 were core targets in the network. Enrichment analysis revealed that pathways associated with cancer, lipids, atherosclerosis, and PI3K-Akt signaling pathways may be critical in the pharmacology network. Molecular-docking data supported the hypothesis that quercetin and luteolin interacted well with TNF-α and IL-6. CONCLUSIONS: An integrative investigation based on a bioinformatics-network topology provided new insights into the synergistic, multicomponent mechanisms of GYS's anti-inflammatory, antibacterial, and antioxidant activities. It revealed novel possibilities for developing new combination medications for reducing mastitis and its complications.


Subject(s)
Drugs, Chinese Herbal , Mastitis , Animals , Female , Humans , Cattle , Network Pharmacology , Antioxidants , Interleukin-6 , Luteolin , Phosphatidylinositol 3-Kinases , Quercetin , Anti-Bacterial Agents , Molecular Docking Simulation , Medicine, Chinese Traditional
3.
Nat Plants ; 9(9): 1481-1499, 2023 09.
Article in English | MEDLINE | ID: mdl-37640933

ABSTRACT

Phenolic acids (PAs) secreted by donor plants suppress the growth of their susceptible plant neighbours. However, how structurally diverse ensembles of PAs are perceived by plants to mediate interspecific competition remains a mystery. Here we show that a plant stress granule (SG) marker, RNA-BINDING PROTEIN 47B (RBP47B), is a sensor of PAs in Arabidopsis. PAs, including salicylic acid, 4-hydroxybenzoic acid, protocatechuic acid and so on, directly bind RBP47B, promote its phase separation and trigger SG formation accompanied by global translation inhibition. Salicylic acid-induced global translation inhibition depends on RBP47 family members. RBP47s regulate the proteome rather than the absolute quantity of SG. The rbp47 quadruple mutant shows a reduced sensitivity to the inhibitory effect of the PA mixture as well as to that of PA-rich rice when tested in a co-culturing ecosystem. In this Article, we identified the long sought-after PA sensor as RBP47B and illustrated that PA-induced SG-mediated translational inhibition was one of the PA perception mechanisms.


Subject(s)
Arabidopsis , Ecosystem , Arabidopsis/genetics , Ecology , Salicylates
4.
Microbiol Spectr ; 11(3): e0206722, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37036349

ABSTRACT

Hepatectomy is a common clinical procedure for the treatment of many liver diseases, and the successful recovery of a patient's liver metabolism and function after surgery is crucial for a good prognosis. The objective of this study was to elucidate the metabolic response to hepatectomy using high-throughput sequencing analysis of 16S rRNA gene, metabolomics, and proteomics data. Fecal and serum samples from beagle dogs were collected on day 0 (LH0), day 7 (LH7), and day 28 (LH28) after laparoscopic partial hepatectomy. Liver tissue samples were taken on LH0 and LH7. Dysbiosis in the fecal microbiota was explored, and host-microbiome interactions based on global metabolic and protein profiles and inflammatory processes were determined. Results showed that the relative abundance of Allobaculum and Turicibacter was decreased and that of Escherichia-Shigella was increased after hepatectomy (P < 0.05); the phenylalanine, tyrosine, and tryptophan biosynthetic pathway, along with the phenylalanine and aminoacyl-tRNA biosynthetic pathway, was significantly associated with liver injury. The serum metabolites l-phenylalanine and l-arginine were useful as biomarkers, and the fecal metabolite l-threonine was a signature target monitor for liver recovery. The proteomics profile revealed 412 significantly different proteins and further highlighted two key signaling pathways (mitogen-activated protein kinase [MAPK] and peroxisome proliferator-activated receptor [PPAR]) involved in the response to liver injury. We systematically explored the metabolic mechanism of liver injury and recovery, providing new insights into effective ways to promote recovery after hepatectomy and improve liver function and long-term survival. These fundamental studies on hepatectomy will provide the basis for future advances in treatment and recovery from common liver diseases. IMPORTANCE As the largest parenchymal organ, the liver is a target for bacterial and viral infections, nonalcoholic fatty liver disease (NAFLD), cirrhosis, cancer, and many other diseases, constituting a serious worldwide problem. The treatment for many of these diseases involves hepatectomy. Here, we show that aberrant inflammatory processes after hepatectomy of the liver as reflected in the association between liver metabolism and gut microbiota create a grave risk. This study investigated the mechanisms of gut microbiota and host metabolism involved in liver injury and recovery after hepatectomy, using proteomics to reveal the mechanisms of postoperative liver injury and a comprehensive multi-omics approach to identify changes in metabolism after hepatectomy.


Subject(s)
Gastrointestinal Microbiome , Animals , Dogs , Gastrointestinal Microbiome/genetics , Hepatectomy , Proteomics , RNA, Ribosomal, 16S/genetics , Metabolomics/methods
5.
Front Microbiol ; 13: 950231, 2022.
Article in English | MEDLINE | ID: mdl-36204605

ABSTRACT

Background: Bovine metabolism undergoes significant changes during subclinical mastitis, but the relevant molecular mechanisms have not been elucidated. In this study we investigated the changes in milk microbiota and metabolites after intramammary infusion of matrine-chitosan hydrogels (MCHs) in cows with subclinical mastitis. Methods: Infusions were continued for 7 days, and milk samples were collected on days 1 and 7 for microbiome analysis by 16S rRNA gene sequencing and metabolite profiling by liquid chromatography-mass spectrometry. Results: MCHs significantly decreased the somatic cell count on day 7 compared to day 1, and the Simpson index indicated that microbial diversity was significantly lower on day 7. The relative abundance of Aerococcus, Corynebacterium_1, Staphylococcus and Firmicutes was significantly decreased on day 7, while Proteobacteria increased. In the milk samples, we identified 74 differentially expressed metabolites. The MCHs infusion group had the most significantly upregulated metabolites including sphingolipids, glycerophospholipids, flavonoids and fatty acyls. The mammary gland metabolic pathways identified after MCHs treatment were consistent with the known antimicrobial and anti-inflammatory properties of matrine that are associated with glycerophospholipid metabolism and the sphingolipid metabolic signaling pathways. Conclusion: These insights into the immunoregulatory mechanisms and the corresponding biological responses to matrine demonstrate its potential activity in mitigating the harmful effects of bovine mastitis.

6.
Front Pharmacol ; 13: 968149, 2022.
Article in English | MEDLINE | ID: mdl-36160439

ABSTRACT

The sesquiterpene lactone, artemisinin, is a primary component of the medicinal plant Artemisia annua L., which has anti-inflammatory, antibacterial and antioxidant activities. However, the potential effects of artemisinin on the mammary gland of dairy cows and the underlying molecular mechanisms remain unclear. Here, we utilized systematic network pharmacology and proteomics to elucidate the mechanism by which artemisinin affects milk production and the proliferation of bovine mammary epithelial cells (BMECs). Nineteen bioactive compounds and 56 key targets were identified through database mining. To delineate the mechanism of artemisia's activity, a protein-protein interaction network and integrated visual display were generated from bioinformatics assays to explore the relationships and interactions among the bioactive molecules and their targets. The gene ontology (GO) terms and kyoto encyclopedia of genes and genomes annotation suggested that the apoptotic process, cell division, p53 pathway, prolactin and PI3K-Akt pathways played vital roles in mammary gland development. Using proteomics analysis, we identified 122 up-regulated and 96 down-regulated differentially significant expressed proteins (DSEPs). The differentially significant expressed proteins had multiple biological functions associated with cell division, apoptosis, differentiation, and migration. Gene ontology enrichment analysis suggested that differentially significant expressed proteins may promote cell proliferation and regulate apoptosis in bovine mammary epithelial cells. Kyoto encyclopedia of genes and genomes pathway analysis indicated that several biological pathways, such as those involved in antigen processing and presentation, cell adhesion molecules and ribosomes, played significant roles in the effects of artemisinin on bovine mammary epithelial cells. These findings contribute to a comprehensive understanding of the mechanism by which artemisinin affects bovine mammary epithelial cells to improve mammary gland turnover by inducing cell proliferation and mammary gland development.

7.
J Inflamm Res ; 15: 4331-4343, 2022.
Article in English | MEDLINE | ID: mdl-35923910

ABSTRACT

Purpose: Streptococcus agalactiae is one of the primary pathogens responsible for subclinical mastitis, a significant economic burden for dairy farms. An essential component of the immune response to infection is ubiquitination, which plays important roles in the complex interactions between the pathogen and host. Materials and Methods: In the present study, quantitative ubiquitylomics was performed to profile changes in the global ubiquitinome of bovine mammary gland epithelial cells (BMECs) infected with S. agalactiae. Results: The most notable changes in the BMEC ubiquitinome were related to the adherens junction, ribosome, and tight junction pathways. Ubiquitination of CTNNB1, EGFR, ITGB1, CTNNA1, CTNNA2, CDH1, YES1, and SLC9A3R1 appears to be fundamental for regulating multiple cellular processes in BMECs in response to S. agalactiae infection. In addition, broad ubiquitination of various effectors and outer membrane proteins was observed. Ubiquitinated proteins in S. agalactiae-infected BMECs were associated with regulating cell junctions in the host, with potential implications for susceptibility to infection. Conclusion: The preliminary findings suggest that extensive ubiquitination of CTNNB1, CDH1 and SLC9A3R1 and proteins closely related to cell junctions might play an important role in mastitis progression in dairy cows. The results provide evidence that ubiquitin modification of certain proteins in S. agalactiae-infected BMECs could be a promising therapeutic strategy for reducing mammary gland injury and mastitis.

8.
Nat Plants ; 8(7): 778-791, 2022 07.
Article in English | MEDLINE | ID: mdl-35817823

ABSTRACT

High temperature is one of the major environmental stresses affecting plant growth and fitness. Heat stress transcription factors (HSFs) play critical roles in regulating the expression of heat-responsive genes. However, how HSFs are regulated remains obscure. Here, we show that ALBA4, ALBA5 and ALBA6, which phase separate into stress granules (SGs) and processing bodies (PBs) under heat stress, directly bind selected messenger RNAs, including HSF mRNAs, and recruit them into SGs and PBs to protect them from degradation under heat stress in Arabidopsis. The alba456 triple mutants, but not single and double mutants, display pleiotropic developmental defects and hypersensitivity to heat stress. Mutations in XRN4, a cytoplasmic 5' to 3' exoribonuclease, can rescue the observed developmental and heat-sensitive phenotypes of alba456 seedlings. Our study reveals a new layer of regulation for HSFs whereby HSF mRNAs are stabilized by redundant action of ALBA proteins in SGs and PBs for plant thermotolerance.


Subject(s)
Arabidopsis , Thermotolerance , Arabidopsis/metabolism , Cytoplasmic Granules/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Carbohydr Polym ; 278: 118910, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973731

ABSTRACT

Staphylococcus aureus (S. aureus) is the major pathogen responsible for mastitis in dairy cows, an important threat to their health, but prevention of S. aureus infection of the mammary gland remains challenging. Berberine hydrochloride (BH), a naturally occurring phytochemical, exhibits a wide range of activities, including antibacterial effects on S. aureus. In this study, we prepared a novel berberine hydrochloride-carboxymethyl chitosan hydrogel (BH-CMCH) with excellent thermosensitivity, injectability and in vitro antibacterial activity. In a rat model of mastitis induced by S. aureus, mammary duct injection of BH-CMCH reduced the bacterial load in infected mammary gland tissue and protected the tissue from damage from infection. In addition, proteomics analysis showed that mammary duct injection of BH-CMCH enhanced autolysosome degradation and promoted the innate immune response by activating the lysosomal pathway and up-regulating related significantly differentially expressed proteins (SDEPs). Taken together, the findings support the potential of BH-CMCH as an antibacterial agent against S. aureus-induced mastitis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Berberine/pharmacology , Chitosan/analogs & derivatives , Hydrogels/pharmacology , Mastitis/drug therapy , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Berberine/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Female , Hydrogels/chemical synthesis , Hydrogels/chemistry , Microbial Sensitivity Tests , Rats , Rats, Sprague-Dawley
10.
Vet Res Forum ; 12(1): 1-6, 2021.
Article in English | MEDLINE | ID: mdl-33953867

ABSTRACT

This study describes a left hemihepatectomy combined with a right lateral hepatic lobectomy. It compares the inflammatory response associated with laparoscopic hepatectomy (LH group, n = 7) with conventional open hepatectomy (OH group, n = 7). Blood was collected before surgery as well as 1, 2, 3, 5, and 7 days after surgery to determine the white blood cell count and levels of serum cortisol (COR), interleukin-6 (IL-6), and C-reactive protein (CRP). The left hemi-hepatectomy combined with a right lateral hepatic lobectomy was completed in miniature pigs. The average operative time was 139.00 ± 9.07 min, which was longer than that in the OH group (121.67 ± 3.02 min). The length of surgical incision associated with the OH group was 17.93 ± 1.09 cm, significantly longer than that related to the LH group (5.10 ± 0.17 cm). The estimated mean blood loss in the LH group was 136.43 ± 63.24 mL, which was significantly lower than that in the OH group. No severe complications (e.g., massive bleeding, bile leakage, and air embolism) were reported. The CRP levels, COR, and IL-6, increased significantly in the OH group and then slowly returned to their preoperative levels. A postoperative laparoscopic exploration revealed that the incised portion of the liver adhered to the omentum, but no additional abnormalities were observed. These findings indicate that a 4-trocar method for laparoscopic left hemihepatectomy combined with a right lateral hepatic lobectomy is safe and feasible. The inflammatory response for those receiving LH are lower than that for those receiving OH. This porcine model can be used as a research analog for liver disease and regeneration.

11.
Cell Stress Chaperones ; 26(1): 91-101, 2021 01.
Article in English | MEDLINE | ID: mdl-32865767

ABSTRACT

This study aimed to verify the anti-inflammatory effect of soybean isoflavones (SI) on the inflammatory response induced by Streptococcus agalactiae (S. agalactiae) of bovine mammary epithelial cells (bMECs) and to elucidate its possible mechanism. BMECs were pretreated with SI of different concentrations (20, 40, 60, 80, 100 µg/mL) for 0.5, 3, 6, 9, 12, 15, 18, 24 h. And then, S. agalactiae was used to infect bMECs for 6 h (MOI = 50:1) to establish the inflammation model. Cell viability, growth curves of S. agalactiae, cytotoxicity, and S. agalactiae invasion rate were determined. A proteomics technique was used to further detect differential proteins and enrichment pathways. SI (40 µg/mL) improved the viability of bMECs at 12 h (p < 0.05) and 60 and 80 µg/mL of SI greater (p < 0.01). Moreover, 60 µg/mL of SI protects cells from bacterial damage (p < 0.05). SI could inhibit S. agalactiae growth and internalization into bMECs in a time- and dose-dependent manner. In addition, proteomics results showed that 133 proteins were up-regulated and 89 proteins were down-regulated significantly. The differentially significantly expressed proteins (DSEPs) were mainly related to cell proliferation, differentiation, apoptosis, and migration. GO annotation showed that 222 DSEPs were divided into 23 biological processes (BP) terms, 14 cell components (CC) terms, and 12 molecular functions (MF) terms. DSEPs were significantly enriched in 10 pathways, of which the immune pathway was the main enrichment pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Epithelial Cells/drug effects , Glycine max , Isoflavones/pharmacology , Streptococcal Infections/veterinary , Streptococcus agalactiae/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Cattle , Cell Line , Cells, Cultured , Epithelial Cells/metabolism , Female , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/veterinary , Isoflavones/chemistry , Mammary Glands, Animal/cytology , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Proteomics , Glycine max/chemistry , Streptococcal Infections/drug therapy , Streptococcal Infections/metabolism , Streptococcus agalactiae/physiology
12.
Front Microbiol ; 11: 2027, 2020.
Article in English | MEDLINE | ID: mdl-32983029

ABSTRACT

Steam explosion is an environment-friendly pretreatment method to improve the subsequent hydrolysis process of lignocellulosic biomass. Steam explosion pretreatment improved ruminal fermentation and changed fermentation pattern of corn stover during ruminal fermentation in vitro. The study gave a comprehensive insight into how stream explosion pretreatment shifted archaeal and bacterial community structure to change ruminal fermentation in vitro of corn stover. Results showed that steam explosion pretreatment dramatically improved the apparent disappearance of dry matter (DM), neutral detergent fiber (NDF), and acid detergent fiber (ADF). Steam explosion pretreatment significantly increased the molar proportion of propionate and decreased the ratio of acetate to propionate. At archaeal level, steam explosion pretreatment significantly increased the relative abundance of Methanobrevibacter, which can effectively remove metabolic hydrogen to keep the fermentation continuing. At bacterial level, the shift in fermentation was achieved by increasing the relative abundance of cellulolytic bacteria and propionate-related bacteria, including Spirochaetes, Elusimicrobia, Fibrobacteres, Prevotella, Treponema, Ruminococcus, and Fibrobacter.

13.
Vet Res ; 51(1): 98, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32746898

ABSTRACT

Streptococcus agalactiae is one of the causative agents of subclinical mastitis, a common disease of dairy cows that causes great economic losses in the industry worldwide. It is thought that pathology is mainly due to inflammatory damage of bovine mammary epithelial cells (bMECs); however, the mechanism by which S. agalactiae damages the bMECs is not clear. The aim of this study was to evaluate the inflammatory effects of S. agalactiae on bMECs and the resulting changes in protein profiles. The bMECs were incubated with S. agalactiae for different times and assayed for cell viability by MTT assay, apoptosis by annexin V and propidium iodide dual staining, and morphological and ultrastructural changes by scanning and transmission electron microscopy. Quantitative real-time PCR was used to determine the effect of S. agalactiae on expression of mRNA of inflammatory factors in bMECs and protein levels were quantitated by liquid chromatography/mass spectrometry. Exposure to S. agalactiae significantly decreased the cell viability and triggered apoptosis, as well as up-regulating TNF-α, IL-1ß and IL-6 mRNA, and inhibiting IL-8 expression. S. agalactiae also induced morphological and ultrastructural changes. Furthermore, we identified 325 up-regulated and 704 down-regulated proteins in the treated vs control group. All significant differentially expressed proteins (DSEPs) were classified into three major areas by function: biological processes, cellular components and molecular functions. These differentially expressed proteins included enzymes and proteins associated with various metabolic processes and cellular immunity. Pathway enrichment analysis showed that eight down-regulated signaling pathways were significantly enriched. Exposure to even subclinical levels of S. agalactiae can lead to inflammation and bMEC damage. Our data suggest some possible molecular mechanisms for the harmful effects of subclinical mastitis in dairy cows.


Subject(s)
Biomarkers/analysis , Cattle Diseases/microbiology , Mammary Glands, Animal/metabolism , Proteome/analysis , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology , Animals , Cattle , Chromatography, Liquid/veterinary , Epithelial Cells , Female , Mammary Glands, Animal/immunology , Proteomics , Real-Time Polymerase Chain Reaction/veterinary , Streptococcal Infections/microbiology , Tandem Mass Spectrometry/veterinary
14.
AMB Express ; 10(1): 154, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32833065

ABSTRACT

This study aimed to explore the effects of artemisinin (ART) on the milk microbiome and metabolites of dairy cow. A total of 12 mid-lactation Holstein dairy cows with similar parity, days in milk were randomly divided into 2 groups receiving either a total mixed ration (TMR) as the control group or this TMR and 120 g/d/head ART as the ART group. The milk samples were collected weekly to determine the contents, and end-of-trial (week 8) milk samples were used to identify microbial species and metabolite profiles by 16S rRNA sequencing and LC-MS analyses, respectively. We observed that the milk fat content significantly increased by ART treatment (P < 0.05). The bacterial community richness was significantly lower in the ART group (P < 0.05), while the diversity showed no difference (P > 0.05). Compared with its abundance in the control (CON) group, Firmicutes was significantly decreased, whereas Proteobacteria was significantly increased. Furthermore, in the ART group, the relative abundances of the genera Aerococcus, Staphylococcus, Corynebacterium_1 and Facklamia were significantly lower (P < 0.01). Metabolomics analysis revealed that ART significantly increasing the concentrations of glycerophospholipids, glycerolipids and flavonoids compared with those in the CON group. An enrichment analysis of the different metabolites showed that ART mainly affected glycerophospholipid metabolism and the pantothenate and CoA biosynthesis pathways. These findings revealed that ART supplementation could affect the milk microbiota and metabolites, that glycerophospholipids and glycerolipids could be potential biomarkers in the milk response to ART feed in dairy cows, and that ART changes substances in milk by maintaining lipid metabolism in the mammary gland.

15.
PLoS One ; 15(5): e0231168, 2020.
Article in English | MEDLINE | ID: mdl-32365127

ABSTRACT

Staphylococcus aureus is one of the most important pathogens causing mastitis in dairy cows. The objective of this study was to establish a rat model of mastitis induced by S. aureus infection and to explore changes in the proteomes of mammary tissue in different udder states, providing a better understanding of the host immune response to S. aureus mastitis. On day 3 post-partum, 6 rats were randomly divided into two groups (n = 3), with either 100 µL of PBS (blank group) or a S. aureus suspension containing 2×107 CFU·mL-1 (challenge group) infused into the mammary gland duct. After 24 h of infection, the rats were sacrificed, and mammary gland tissue was collected. Tandem mass tag (TMT)-based technology was applied to compare the proteomes of healthy and mastitic mammary tissues. Compared with the control group, the challenge group had 555 proteins with significant differences in expression, of which 428 were significantly upregulated (FC>1.2 and p<0.05) and 127 were downregulated (FC>0.83 and p<0.05 or p<0.01). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that upregulated differentially significant expressed proteins (DSEPs) were associated with mainly immune responses, including integrin alpha M, inter-α-trypsin inhibitor heavy chain 4, and alpha-2-macroglobulin. This study is the first in which a rat model of S. aureus-induced mastitis was used to explore the proteins related to mastitis in dairy cows by TMT technology, providing a model for replication of dairy cow S. aureus-induced mastitis experiments.


Subject(s)
Mammary Glands, Animal/metabolism , Mastitis/metabolism , Proteome/analysis , Staphylococcal Infections/metabolism , Staphylococcus aureus/physiology , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Female , Mammary Glands, Animal/microbiology , Mammary Glands, Animal/pathology , Mastitis/microbiology , Mastitis/pathology , Pregnancy , Proteome/metabolism , Proteomics/methods , Rats , Rats, Sprague-Dawley , Staphylococcal Infections/pathology , Tandem Mass Spectrometry
16.
Asian-Australas J Anim Sci ; 33(1): 79-90, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31480145

ABSTRACT

OBJECTIVE: In the present study, an liquid chromatography/mass spectrometry (LC/MS) metabolomics approach was performed to investigate potential biomarkers of milk production in high- and low-milk-yield dairy cows and to establish correlations among rumen fluid metabolites. METHODS: Sixteen lactating dairy cows with similar parity and days in milk were divided into high-yield (HY) and low-yield (LY) groups based on milk yield. On day 21, rumen fluid metabolites were quantified applying LC/MS. RESULTS: The principal component analysis and orthogonal correction partial least squares discriminant analysis showed significantly separated clusters of the ruminal metabolite profiles of HY and LY groups. Compared with HY group, a total of 24 ruminal metabolites were significantly greater in LY group, such as 3-hydroxyanthranilic acid, carboxylic acids, carboxylic acid derivatives (L-isoleucine, L-valine, L-tyrosine, etc.), diazines (uracil, thymine, cytosine), and palmitic acid, while the concentrations of 30 metabolites were dramatically decreased in LY group compared to HY group, included gentisic acid, caprylic acid, and myristic acid. The metabolite enrichment analysis indicated that protein digestion and absorption, ABC transporters and unsaturated fatty acid biosynthesis were significantly different between the two groups. Correlation analysis between the ruminal microbiome and metabolites revealed that certain typical metabolites were exceedingly associated with definite ruminal bacteria; Firmicutes, Actinobacteria, and Synergistetes phyla were highly correlated with most metabolites. CONCLUSION: These findings revealed that the ruminal metabolite profiles were significantly different between HY and LY groups, and these results may provide novel insights to evaluate biomarkers for a better feed digestion and may reveal the potential mechanism underlying the difference in milk yield in dairy cows.

17.
Asian-Australas J Anim Sci ; 33(1): 61-68, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31480204

ABSTRACT

OBJECTIVE: The present study explored the effects of grape seed procyanidin extract (GSPE) on rumen fermentation, methane production and archaeal communities in vitro. METHODS: A completely randomized experiment was conducted with in vitro incubation in a control group (CON, no GSPE addition; n = 9) and the treatment group (GSPE, 1 mg/bottle GSPE, 2 g/kg dry matter; n = 9). The methane and volatile fatty acid concentrations were determined using gas chromatography. To explore methane inhibition after fermentation and the response of the ruminal microbiota to GSPE, archaeal 16S rRNA genes were sequenced by MiSeq high-throughput sequencing. RESULTS: The results showed that supplementation with GSPE could significantly inhibit gas production and methane production. In addition, GSPE treatment significantly increased the proportion of propionate, while the acetate/propionate ratio was significantly decreased. At the genus level, the relative abundance of Methanomassiliicoccus was significantly increased, while the relative abundance of Methanobrevibacter decreased significantly in the GSPE group. CONCLUSION: In conclusion, GSPE is a plant extract that can reduce methane production by affecting the structures of archaeal communities, which was achieved by a substitution of Methanobrevibacter with Methanomassiliicoccus.

18.
Front Microbiol ; 10: 2547, 2019.
Article in English | MEDLINE | ID: mdl-31781063

ABSTRACT

The microbial ecosystem in the udders of dairy cows directly influences the flavor and quality of milk. However, to our knowledge, no published research has analyzed the complex relationship between the udder microbiome and its associated metabolism in animals with subclinical mastitis. We identified the bacterial species and measured relative population numbers in the milk of cows with subclinical Streptococcus agalactiae mastitis (GBS) and compared this information to that from the milk of healthy cows. Metabolite profiles were determined to investigate correlations between the milk microbiota and metabolic factors in healthy vs. GBS dairy cows. Six milk samples from GBS cows and six from healthy cows were subjected to 16S rRNA gene sequencing to identify the microbial species using a MiSeq high-throughput sequencing apparatus. The metabolites present in the milk were identified by gas chromatography time-of-flight mass spectrometry. Both principal component analysis and orthogonal partial least squares discriminant analysis indicated that the metabolites were well-separated from each other in the milk samples from the two groups. GBS dramatically altered microbial diversity, and the GBS group had significantly fewer Proteobacteria, Actinobacteria, and Acidobacteria than the CON group, with greater relative abundance of Firmicutes (p < 0.01). Several bacterial genera, such as Streptococcus, were significantly more abundant in milk from the GBS group than in milk from the CON group, and there was a tendency for greater abundance of Turicibacter (p = 0.07) and Enterococcus spp. (p = 0.07) in the GBS group. The levels of five milk metabolites were significantly higher in the GBS group than in the CON group: phenylpyruvic acid, the homogentisic acid: 4-hydroxyphenylpyruvic acid ratio, the xanthine: guanine ratio, uridine and glycerol. Metabolic pathway analysis of the different metabolites revealed that the following were enriched in both groups: galactose metabolism; pentose and glucuronate interconversion; starch and sucrose metabolism; alanine, aspartate and glutamate metabolism; arginine biosynthesis; citrate cycle (TCA cycle); D-glutamine and D-glutamate metabolism; and the neomycin, kanamycin, and gentamicin biosynthesis pathways. Several typical metabolites were highly correlated with specific ruminal bacteria, such as Streptococcaceae, Lachnospiraceae, Lactobacillaceae and Corynebacteriaceae, demonstrating the functional correlations between the milk microbiome and associated metabolites. These findings revealed that the milk microbiota and metabolite profiles were significantly different between the two groups of cows, raising the question of whether the microbiota associated with the bovine mammary gland could be related to mammary gland health. There was also a relationship between milk quality and the presence of spoilage bacteria. Other bacterial taxa should be investigated, as related information may provide insights into how perturbations in milk metabolomics profiles relate to differences in milk synthesis between healthy cows and those with subclinical mastitis.

19.
Sci Adv ; 5(5): eaav9040, 2019 05.
Article in English | MEDLINE | ID: mdl-31106272

ABSTRACT

The R-loop, composed of a DNA-RNA hybrid and the displaced single-stranded DNA, regulates diverse cellular processes. However, how cellular R-loops are recognized remains poorly understood. Here, we report the discovery of the evolutionally conserved ALBA proteins (AtALBA1 and AtALBA2) functioning as the genic R-loop readers in Arabidopsis. While AtALBA1 binds to the DNA-RNA hybrid, AtALBA2 associates with single-stranded DNA in the R-loops in vitro. In vivo, these two proteins interact and colocalize in the nucleus, where they preferentially bind to genic regions with active epigenetic marks in an R-loop-dependent manner. Depletion of AtALBA1 or AtALBA2 results in hypersensitivity of plants to DNA damaging agents. The formation of DNA breaks in alba mutants originates from unprotected R-loops. Our results reveal that the AtALBA1 and AtALBA2 protein complex is the genic R-loop reader crucial for genome stability in Arabidopsis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Genetic Complementation Test , Genome, Plant , Genomic Instability , Mutation , RNA-Binding Proteins/genetics , Cell Nucleus/metabolism , DNA/analysis , DNA Damage , Epigenesis, Genetic , Green Fluorescent Proteins/metabolism , Phylogeny , Protein Multimerization , RNA/analysis , Recombinant Fusion Proteins/genetics
20.
Front Microbiol ; 9: 2764, 2018.
Article in English | MEDLINE | ID: mdl-30524394

ABSTRACT

The rumen microbial complex adaptive mechanism invalidates various methane (CH4) mitigation strategies. Shifting the hydrogen flow toward alternative electron acceptors, such as propionate, was considered to be a meaningful mitigation strategy. A completely randomized design was applied in in vitro incubation to investigate the effects of replacing forage fiber with non-forage fiber sources (NFFS) in diets on methanogenesis, hydrogen metabolism, propionate production and the methanogenic and bacterial community. There are two treatments in the current study, CON (a basic total mixed ration) and TRT (a modified total mixed ration). The dietary treatments were achieved by partly replacing forage fiber with NFFS (wheat bran and soybean hull) to decrease forage neutral detergent fiber (fNDF) content from 24.0 to 15.8%, with the composition and inclusion rate of other dietary ingredients remaining the same in total mixed rations. The concentrations of CH4, hydrogen (H2) and volatile fatty acids were determined using a gas chromatograph. The archaeal and bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the relative abundance of methanogenic and bacterial communities. The results revealed that the concentration of propionate was significantly increased, while the concentration of acetate and the acetate to propionate ratio were not affected by treatments. Compared with CON, the production of H2 increased by 8.45% and the production of CH4 decreased by 14.06%. The relative abundance of Methanomassiliicoccus was significantly increased, but the relative abundance of Methanobrevibacter tended to decrease in TRT group. At the bacterial phylum level, the TRT group significantly decreased the relative abundance of Firmicutes and tended to increase the relative abundance of Bacteroidetes. The replacement of forage fiber with NFFS in diets can affect methanogenesis by shifting the hydrogen flow toward propionate, and part is directed to H2 in vitro. The shift was achieved by a substitution of Firmicutes by Bacteroidetes, another substitution of Methanobrevibacter by Methanomassiliicoccus. Theoretical predictions of displacements of H2 metabolism from methanogenesis to propionate production was supported by the dietary intervention in vitro.

SELECTION OF CITATIONS
SEARCH DETAIL
...