Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(14): e2105738, 2022 05.
Article in English | MEDLINE | ID: mdl-35289123

ABSTRACT

Thin, lightweight, and flexible textile pressure sensors with the ability to detect the full range of faint pressure (<100 Pa), low pressure (≈KPa) and high pressure (≈MPa) are in significant demand to meet the requirements for applications in daily activities and more meaningfully in some harsh environments, such as high temperature and high pressure. However, it is still a significant challenge to fulfill these requirements simultaneously in a single pressure sensor. Herein, a high-performance pressure sensor enabled by polyimide fiber fabric with functionalized carbon-nanotube (PI/FCNT) is obtained via a facile electrophoretic deposition (EPD) approach. High-density FCNT is evenly wrapped and chemically bonded to the fiber surface during the EPD process, forming a conductive hierarchical fiber/FCNT matrix. Benefiting from the large compressible region of PI fiber fabric, abundant yet firm contacting points and high elastic modulus of both PI and CNT, the proposed pressure sensor can be customized and modulated to achieve both an ultra-broad sensing range, long-term stability and high-temperature resistance. Thanks to these merits, the proposed pressure sensor could monitor the human physiological information, detect tiny and extremely high pressure, can be integrated into an intelligent mechanical hand to detect the contact force under high-temperature.


Subject(s)
Nanotubes, Carbon , Wearable Electronic Devices , Humans , Pressure , Temperature , Textiles
2.
ACS Appl Mater Interfaces ; 13(7): 8417-8425, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33587588

ABSTRACT

Lithium-metal batteries (LMBs) are promising electrochemical energy storage devices with high energy densities. However, the extreme reactivity of metallic lithium, the large volumetric change of the electrode during cycling, and the notorious dendrite formation issues lead to low cyclic stability and safety concerns, hindering the practical application of LMBs. In particular, the intrinsic tendency of uneven lithium deposition and the large internal electrode stress lead to the piecing of solid electrolyte interphases (SEIs), thereby resulting in fast decay of the anode. We develop a facile laser processing technique to fabricate laser-structured copper foils (LSCFs) that are able to regulate the lithium deposition kinetics and increase the cycle life of LMBs. By simply scribing commercial foils using a 355 nm laser, microstructural features with fish-scale patterns are obtained. The lithium deposition follows a drastically different mode on the LSCF compared with commercial planar copper foils which relieves the internal stress of lithium and prohibits the piecing of SEI. A high Coulombic efficiency of >96% of the lithium metal anode is maintained for over 100 cycles on the LSCF at a current density of 1 mA cm-2 and an areal capacity of 1 mAh cm-2 while the benchmark decayed to below 80% after 50 cycles. Full cells based on LiFePO4 cathodes display a reasonable specific capacity of 125 mAh g-1 over 300 cycles at a rate of 1 C. This work provides a fast yet effective laser-based approach to construct highly stable lithium metal anodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...