Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Phytomedicine ; 125: 155325, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295663

ABSTRACT

BACKGROUND: Sepsis and its associated heart failure are among the leading causes of death. Gramine, a natural indole alkaloid, can be extracted from a wide variety of raw plants, and it exhibits therapeutic potential in pathological cardiac hypertrophy. However, the effect of gramine on inflammatory cardiomyopathy, particularly sepsis-induced myocardial injury, remains an unexplored area. PURPOSE: To determine the role of gramine in sepsis-induced myocardial dysfunction and explore its underlying mechanism. STUDY DESIGN AND METHODS: In mice, sepsis was established by intraperitoneally injecting lipopolysaccharide (LPS, 10 mg/kg). Subsequently, the effects of gramine administration (50 or 100 mg/kg) on LPS-triggered cardiac dysfunction in mice were investigated. For in vitro studies, isolated primary cardiomyocytes were used to assess the effect of gramine (25 or 50 µM) on LPS-induced apoptosis and inflammation. Additionally, molecular docking, co-immunoprecipitation and ubiquitination analyzes were conducted to explore the underlying mechanisms. RESULTS: Gramine visibly ameliorated sepsis-induced cardiac dysfunction, inflammatory response, and mortality in vivo. Moreover, it significantly alleviated LPS-induced apoptotic and inflammatory responses in vitro. Furthermore, target prediction for gramine using the SuperPred website indicated that the nuclear factor NF-κB p105 subunit was one of the molecules ranked in priority order with a high model accuracy and a high probability score. Molecular docking studies demonstrated that gramine effectively docked to the death domain of NF-κB p105. Mechanistic studies revealed that gramine suppressed the processing of NF-κB p105 to p50 by inhibiting NF-κB p105 ubiquitination. Additionally, the protective effect of gramine on cardiac injury was almost abolished by overexpressing NF-κB p105. CONCLUSION: Gramine is a promising bioactive small molecule for treating sepsis-induced myocardial dysfunction, which acts by docking to NF-κB p105 and inhibiting NF-κB p105 ubiquitination, thus preventing its processing to NF-κB p50. Therefore, gramine holds potential as a clinical drug for treating myocardial depression during sepsis.


Subject(s)
Cardiomyopathies , Heart Diseases , Sepsis , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides , Molecular Docking Simulation , Indole Alkaloids , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Ubiquitination , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism
2.
Cell Rep Med ; 4(7): 101109, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37467725

ABSTRACT

Direct diagnosis and accurate assessment of metabolic syndrome (MetS) allow for prompt clinical interventions. However, traditional diagnostic strategies overlook the complex heterogeneity of MetS. Here, we perform metabolomic analysis in 13,554 participants from the natural cohort and identify 26 hub plasma metabolic fingerprints (PMFs) associated with MetS and its early identification (pre-MetS). By leveraging machine-learning algorithms, we develop robust diagnostic models for pre-MetS and MetS with convincing performance through independent validation. We utilize these PMFs to assess the relative contributions of the four major MetS risk factors in the general population, ranked as follows: hyperglycemia, hypertension, dyslipidemia, and obesity. Furthermore, we devise a personalized three-dimensional plasma metabolic risk (PMR) stratification, revealing three distinct risk patterns. In summary, our study offers effective screening tools for identifying pre-MetS and MetS patients in the general community, while defining the heterogeneous risk stratification of metabolic phenotypes in real-world settings.


Subject(s)
Hypertension , Metabolic Syndrome , Humans , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Risk Factors , Obesity/diagnosis , Hypertension/epidemiology , Risk Assessment
3.
Emerg Microbes Infect ; 12(1): e2187245, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36987861

ABSTRACT

Over 3 billion doses of inactivated vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been administered globally. However, our understanding of the immune cell functional transcription and T cell receptor (TCR)/B cell receptor (BCR) repertoire dynamics following inactivated SARS-CoV-2 vaccination remains poorly understood. Here, we performed single-cell RNA and TCR/BCR sequencing on peripheral blood mononuclear cells at four time points after immunization with the inactivated SARS-CoV-2 vaccine BBIBP-CorV. Our analysis revealed an enrichment of monocytes, central memory CD4+ T cells, type 2 helper T cells and memory B cells following vaccination. Single-cell TCR-seq and RNA-seq comminating analysis identified a clonal expansion of CD4+ T cells (but not CD8+ T cells) following a booster vaccination that corresponded to a decrease in the TCR diversity of central memory CD4+ T cells and type 2 helper T cells. Importantly, these TCR repertoire changes and CD4+ T cell differentiation were correlated with the biased VJ gene usage of BCR and the antibody-producing function of B cells post-vaccination. Finally, we compared the functional transcription and repertoire dynamics in immune cells elicited by vaccination and SARS-CoV-2 infection to explore the immune responses under different stimuli. Our data provide novel molecular and cellular evidence for the CD4+ T cell-dependent antibody response induced by inactivated vaccine BBIBP-CorV. This information is urgently needed to develop new prevention and control strategies for SARS-CoV-2 infection. (ClinicalTrials.gov Identifier: NCT04871932).


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Leukocytes, Mononuclear , SARS-CoV-2 , Receptors, Antigen, B-Cell , Immunization, Secondary , Sequence Analysis, RNA , Antibodies, Viral
4.
Eur Heart J ; 43(24): 2317-2334, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35267019

ABSTRACT

AIMS: Adverse cardiovascular events have day/night patterns with peaks in the morning, potentially related to endogenous circadian clock control of platelet activation. Circadian nuclear receptor Rev-erbα is an essential and negative component of the circadian clock. To date, the expression profile and biological function of Rev-erbα in platelets have never been reported. METHODS AND RESULTS: Here, we report the presence and functions of circadian nuclear receptor Rev-erbα in human and mouse platelets. Both human and mouse platelet Rev-erbα showed a circadian rhythm that positively correlated with platelet aggregation. Global Rev-erbα knockout and platelet-specific Rev-erbα knockout mice exhibited defective in haemostasis as assessed by prolonged tail-bleeding times. Rev-erbα deletion also reduced ferric chloride-induced carotid arterial occlusive thrombosis, prevented collagen/epinephrine-induced pulmonary thromboembolism, and protected against microvascular microthrombi obstruction and infarct expansion in an acute myocardial infarction model. In vitro thrombus formation assessed by CD41-labelled platelet fluorescence intensity was significantly reduced in Rev-erbα knockout mouse blood. Platelets from Rev-erbα knockout mice exhibited impaired agonist-induced aggregation responses, integrin αIIbß3 activation, and α-granule release. Consistently, pharmacological inhibition of Rev-erbα by specific antagonists decreased platelet activation markers in both mouse and human platelets. Mechanistically, mass spectrometry and co-immunoprecipitation analyses revealed that Rev-erbα potentiated platelet activation via oligophrenin-1-mediated RhoA/ERM (ezrin/radixin/moesin) pathway. CONCLUSION: We provided the first evidence that circadian protein Rev-erbα is functionally expressed in platelets and potentiates platelet activation and thrombus formation. Rev-erbα may serve as a novel therapeutic target for managing thrombosis-based cardiovascular disease.


Subject(s)
Circadian Clocks , Thrombosis , Animals , Blood Platelets/metabolism , Circadian Clocks/physiology , Circadian Rhythm/physiology , Humans , Mice , Mice, Knockout , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Platelet Activation
5.
Hepatology ; 75(4): 939-954, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34545586

ABSTRACT

BACKGROUND AND AIMS: NASH, which is a common clinical condition predisposing to advanced liver diseases, has become a worldwide epidemic. A large and growing unmet therapeutic need for this condition reflects incomplete understanding of its pathogenesis. In the current study, we identified a transcription factor, zinc fingers and homeoboxes 2 (ZHX2), in hepatocytes as a protective factor against steatohepatitis. APPROACH AND RESULTS: We found that hepatic ZHX2 was significantly suppressed in NASH models and steatotic hepatic cells. Hepatocyte-specific ablation of ZHX2 exacerbated NASH-related phenotypes in mice, including lipid accumulation, enhanced inflammation, and hepatic fibrosis. Conversely, hepatocyte-specific overexpression of ZHX2 significantly alleviated the progression of NASH in an experimental setting. Integrated analysis of transcriptomic profiling and chromatin immunoprecipitation sequencing data demonstrated that the phosphatase and tensin homolog (PTEN) was a target gene of ZHX2 in hepatocyte. ZHX2 bound to the promoter of PTEN gene and subsequently promoted the transcription of PTEN, which mediated the beneficial role of ZHX2 against NASH. CONCLUSIONS: The current findings demonstrate a protective role of ZHX2 against NASH progression by transcriptionally activating PTEN. These findings shed light on the therapeutic potential of targeting ZHX2 for treating NASH and related metabolic disorders.


Subject(s)
Homeodomain Proteins , Non-alcoholic Fatty Liver Disease , Transcription Factors , Animals , Genes, Homeobox , Hepatocytes/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Tensins/genetics , Tensins/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Zinc Fingers
6.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165890, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32599143

ABSTRACT

Disruptions of the circadian rhythm and reduced circulating levels of the circadian hormone melatonin predispose to ischemic stroke. Although the nuclear receptor RORα is considered as a circadian rhythm regulator and a mediator of certain melatonin effects, its potential role in cerebral ischemia-reperfusion (CI/R) injury and in the neuroprotective effects of melatonin remain undefined. Here, we observed that CI/R injury in RORα-deficient mice was associated with greater cerebral infarct size, brain edema, and cerebral apoptosis compared with wild-type model. In contrast, transgenic mice with brain-specific overexpression of RORα versus non-transgenic controls exerted significantly reduced infarct volume, brain edema and apoptotic response induced by CI/R. Mechanistically, RORα deficiency was found to exacerbate apoptosis pathways mediated by endoplasmic-reticulum stress and mitochondria and aggravate oxidative/nitrative stress after CI/R. Further studies revealed that RORα deficiency intensified the activation of nuclear factor-κB signaling induced by CI/R. Given the emerging evidence of RORα as an essential melatonin activity mediator, we further investigated the RORα roles in melatonin-exerted neuroprotection against acute ischemic stroke. Melatonin treatment significantly decreased infarct volume and cerebral apoptosis; mitigated endoplasmic reticulum stress and mitochondrial dysfunction; and inhibited CI/R injury-induced oxidative/nitrative stress and nuclear factor-κB activation, which was eradicated in RORα-deficient mice. Collectively, current findings suggest that RORα is a novel endogenous neuroprotective receptor, and a pivotal mediator of melatonin's suppressive effects against CI/R injury.


Subject(s)
Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Melatonin/therapeutic use , Neuroprotective Agents/therapeutic use , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Brain Ischemia/genetics , Cerebral Infarction/drug therapy , Cerebral Infarction/genetics , Cerebral Infarction/metabolism , Circadian Rhythm/drug effects , Circadian Rhythm/genetics , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Male , Mice , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Oxidative Stress/drug effects , Reperfusion Injury/genetics , Signal Transduction/drug effects
7.
J Pineal Res ; 67(2): e12581, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31009101

ABSTRACT

Rupture of vulnerable plaques is the main trigger of acute cardio-cerebral vascular events, but mechanisms responsible for transforming a stable atherosclerotic into a vulnerable plaque remain largely unknown. Melatonin, an indoleamine hormone secreted by the pineal gland, plays pleiotropic roles in the cardiovascular system; however, the effect of melatonin on vulnerable plaque rupture and its underlying mechanisms remains unknown. Here, we generated a rupture-prone vulnerable carotid plaque model induced by endogenous renovascular hypertension combined with low shear stress in hypercholesterolemic ApoE-/- mice. Melatonin (10 mg/kg/d by oral administration for 9 weeks) significantly prevented vulnerable plaque rupture, with lower incidence of intraplaque hemorrhage (42.9% vs. 9.5%, P = 0.014) and of spontaneous plaque rupture with intraluminal thrombus formation (38.1% vs. 9.5%, P = 0.029). Mechanistic studies indicated that melatonin ameliorated intraplaque inflammation by suppressing the differentiation of intraplaque macrophages toward the proinflammatory M1 phenotype, and circadian nuclear receptor retinoid acid receptor-related orphan receptor-α (RORα) mediated melatonin-exerted vasoprotection against vulnerable plaque instability and intraplaque macrophage polarization. Further analysis in human monocyte-derived macrophages confirmed the role of melatonin in regulating macrophage polarization by regulating the AMPKα-STATs pathway in a RORα-dependent manner. In summary, our data provided the first evidence that melatonin-RORα axis acts as a novel endogenous protective signaling pathway in the vasculature, regulates intraplaque inflammation, and stabilizes rupture-prone vulnerable plaques.


Subject(s)
Atherosclerosis/metabolism , Macrophages/metabolism , Melatonin/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Plaque, Atherosclerotic/metabolism , Signal Transduction/drug effects , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/pathology , Humans , Macrophages/pathology , Male , Mice , Mice, Knockout, ApoE , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Signal Transduction/genetics
8.
J Pineal Res ; 67(2): e12579, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30958896

ABSTRACT

Exercise-induced physiological hypertrophy provides protection against cardiovascular disease, whereas disease-induced pathological hypertrophy leads to heart failure. Emerging evidence suggests pleiotropic roles of melatonin in cardiac disease; however, the effects of melatonin on physiological vs pathological cardiac hypertrophy remain unknown. Using swimming-induced physiological hypertrophy and pressure overload-induced pathological hypertrophy models, we found that melatonin treatment significantly improved pathological hypertrophic responses accompanied by alleviated oxidative stress in myocardium but did not affect physiological cardiac hypertrophy and oxidative stress levels. As an important mediator of melatonin, the retinoid-related orphan nuclear receptor-α (RORα) was significantly decreased in human and murine pathological hypertrophic cardiomyocytes, but not in swimming-induced physiological hypertrophic murine hearts. In vivo and in vitro loss-of-function experiments indicated that RORα deficiency significantly aggravated pathological cardiac hypertrophy, and notably weakened the anti-hypertrophic effects of melatonin. Mechanistically, RORα mediated the cardioprotection of melatonin in pathological hypertrophy mainly by transactivation of manganese-dependent superoxide dismutase (MnSOD) via binding to the RORα response element located in the promoter region of the MnSOD gene. Furthermore, MnSOD overexpression reversed the pro-hypertrophic effects of RORα deficiency, while MnSOD silencing abolished the anti-hypertrophic effects of RORα overexpression in pathological cardiac hypertrophy. Collectively, our findings provide the first evidence that melatonin exerts an anti-hypertrophic effect on pathological but not physiological cardiac hypertrophy via alleviating oxidative stress through transactivation of the antioxidant enzyme MnSOD in a RORα-dependent manner.


Subject(s)
Cardiomegaly/metabolism , Melatonin/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Disease Models, Animal , Mice , Mice, Mutant Strains , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Superoxide Dismutase/genetics
9.
J Genet Genomics ; 45(3): 125-135, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29576508

ABSTRACT

Sentrin-specific protease 3 (SENP3), a member of the desumoylating enzyme family, is known as a redox sensor and could regulate multiple cellular signaling pathways. However, its implication in myocardial ischemia reperfusion (MIR) injury is unclear. Here, we observed that SENP3 was expressed and upregulated in the mouse heart depending on reactive oxygen species (ROS) production in response to MIR injury. By utilizing siRNA-mediated cardiac specific gene silencing, SENP3 knockdown was demonstrated to significantly reduce MIR-induced infarct size and improve cardiac function. Mechanistic studies indicated that SENP3 silencing ameliorated myocardial apoptosis mainly via suppression of endoplasmic reticulum (ER) stress and mitochondrial-mediated apoptosis pathways. By contrast, adenovirus-mediated cardiac SENP3 overexpression significantly exaggerated MIR injury. Further molecular analysis revealed that SENP3 promoted mitochondrial translocation of dynamin-related protein 1 (Drp1) in reperfused myocardium. In addition, mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, significantly attenuated the exaggerated mitochondrial abnormality and cardiac injury by SENP3 overexpression after MIR injury. Taken together, we provide the first direct evidence that SENP3 upregulation pivotally contributes to MIR injury in a Drp1-dependent manner, and suggest that SENP3 suppression may hold therapeutic promise for constraining MIR injury.


Subject(s)
Cysteine Endopeptidases/genetics , Dynamins/genetics , Myocardial Reperfusion Injury/genetics , Peptide Hydrolases/genetics , Animals , Apoptosis/genetics , Dynamins/antagonists & inhibitors , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation/drug effects , Humans , Mice , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Dynamics/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Oxidative Stress/drug effects , Quinazolinones/administration & dosage , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
10.
Hepatology ; 68(3): 897-917, 2018 09.
Article in English | MEDLINE | ID: mdl-29573006

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis (HS), insulin resistance (IR), and inflammation, poses a high risk of cardiometabolic disorders. Ubiquitin specific protease 4 (USP4), a deubiquitinating enzyme, is pivotally involved in regulating multiple inflammatory pathways; however, the role of USP4 in NAFLD is unknown. Here, we report that USP4 expression was dramatically down-regulated in livers from NAFLD patients and different NAFLD mouse models induced by high-fat diet (HFD) or genetic deficiency (ob/ob) as well as in palmitate-treated hepatocytes. Hepatocyte-specific USP4 depletion exacerbated HS, IR, and inflammatory response in HFD-induced NAFLD mice. Conversely, hepatic USP4 overexpression notably alleviated the pathological alterations in two different NAFLD models. Mechanistically, hepatocyte USP4 directly bound to and deubiquitinated transforming growth factor-ß activated kinase 1 (TAK1), leading to a suppression of the activation of downstream nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) cascades, which, in turn, reversed the disruption of insulin receptor substrate/protein kinase B/glycogen synthase kinase 3 beta (IRS-AKT-GSK3ß) signaling. In addition, USP4-TAK1 interaction and subsequent TAK1 deubiquitination were required for amelioration of metabolic dysfunctions. Conclusion: Collectively, the present study provides evidence that USP4 functions as a pivotal suppressor in NAFLD and related metabolic disorders. (Hepatology 2018; 00:000-000).


Subject(s)
Liver/enzymology , Non-alcoholic Fatty Liver Disease/enzymology , Ubiquitin-Specific Proteases/metabolism , Animals , Hepatocytes/enzymology , Humans , Insulin Resistance , Leptin/deficiency , MAP Kinase Signaling System , Male , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/etiology , Obesity/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...