Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 6(2): e16949, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21347374

ABSTRACT

BACKGROUND: As one of the most widely used organophosphate insecticides in vegetable production, phoxim (C(12)H(15)N(2)O(3)PS) is often found as residues in crops and soils and thus poses a potential threat to public health and environment. Arbuscular mycorrhizal (AM) fungi may make a contribution to the decrease of organophosphate residues in crops and/or the degradation in soils, but such effects remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: A greenhouse pot experiment studied the influence of AM fungi and phoxim application on the growth of carrot and green onion, and phoxim concentrations in the two vegetables and their soil media. Treatments included three AM fungal inoculations with Glomus intraradices BEG 141, G. mosseae BEG 167, and a nonmycorrhizal control, and four phoxim application rates (0, 200, 400, 800 mg l(-1), while 400 mg l(-1) rate is the recommended dose in the vegetable production system). Carrot and green onion were grown in a greenhouse for 130 d and 150 d. Phoxim solution (100 ml) was poured into each pot around the roots 14d before plant harvest. Results showed that mycorrhizal colonization was higher than 70%, and phoxim application inhibited AM colonization on carrot but not on green onion. Compared with the nonmycorrhizal controls, both shoot and root fresh weights of these two vegetables were significantly increased by AM inoculations irrespective of phoxim application rates. Phoxim concentrations in shoots, roots and soils were increased with the increase of phoxim application rate, but significantly decreased by the AM inoculations. Soil phosphatase activity was enhanced by both AM inocula, but not affected by phoxim application rate. In general, G. intraradices BEG 141 had more pronounced effects than G. mosseae BEG 167 on the increase of fresh weight production in both carrot and green onion, and the decrease of phoxim concentrations in plants and soils. CONCLUSIONS/SIGNIFICANCE: Our results indicate a promising potential of AM fungi for enhancing vegetable production and reducing organophosphorus pesticide residues in plant tissues and their growth media, as well as for the phytoremediation of organophosphorus pesticide-contaminated soils.


Subject(s)
Allium/microbiology , Daucus carota/microbiology , Mycorrhizae/physiology , Organothiophosphorus Compounds/metabolism , Pesticide Residues/metabolism , Soil , Vegetables/microbiology , Allium/growth & development , Allium/metabolism , Daucus carota/growth & development , Daucus carota/metabolism , Phosphoric Monoester Hydrolases/metabolism , Soil Microbiology , Vegetables/growth & development , Vegetables/metabolism
2.
J Hazard Mater ; 185(1): 112-6, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-20870354

ABSTRACT

Organophosphorus pesticides in crops and soil pose a serious threat to public health and environment. Arbuscular mycorrhizal (AM) fungi may make a contribution to organophosphate degradation in soil and consequently decrease chemical residues in crops. A pot culture experiment was conducted to investigate the influences of Glomus caledonium 90036 and Acaulospora mellea ZZ on the dynamics of phoxim residues in green onion (Allium fistulosum L.) and soil at different harvest dates after phoxim application. Results show that mycorrhizal colonization rates of inoculated plants were higher than 70%. Shoot and root fresh weights did not vary with harvest dates but increased significantly in AM treatments. Phoxim residues in plants and soil decreased gradually with harvest dates, and markedly reduced in AM treatments. Kinetic analysis indicated that phoxim degradation in soil followed a first-order kinetic model. AM inoculation accelerated the degradation process and reduced the half-life. G. caledonium 90036 generally produced more pronounced effects than A. mellea ZZ on both the plant growth and phoxim residues in plants and soil. Our results indicate a promising potential of AM fungi for the control of organophosphate residues in vegetables, as well as for the phytoremediation of organophosphorus pesticide-contaminated soil.


Subject(s)
Insecticides/chemistry , Mycorrhizae/chemistry , Onions/chemistry , Organothiophosphorus Compounds/chemistry , Pesticide Residues/chemistry , Soil Pollutants/analysis , Soil/analysis , Biodegradation, Environmental , Biomass , Half-Life , Kinetics , Mycorrhizae/genetics , Mycorrhizae/metabolism , Plant Roots/chemistry , Plant Shoots/chemistry , Vegetables/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...