Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
1.
Article in English | MEDLINE | ID: mdl-38557619

ABSTRACT

Visual selective attention studies generally tend to apply cuing paradigms to instructively direct observers' attention to certain locations, features or objects. However, in real situations, attention in humans often flows spontaneously without any specific instructions. Recently, a concept named "willed attention" was raised in visuospatial attention, in which participants are free to make volitional attention decisions. Several ERP components during willed attention were found, along with a perspective that ongoing alpha activity may bias the subsequent attentional choice. However, it remains unclear whether similar neural mechanisms exist in feature- or object-based willed attention. Here, we included choice cues and instruct cues in a feature-based selective attention paradigm, allowing participants to freely choose or to be instructed to attend a color for the subsequent target detection task. Pre-cue ongoing alpha oscillations, cue-evoked potentials and target-related steady-state visual evoked potentials (SSVEPs) were simultaneously measured as markers of attentional processing. As expected, SSVEP responses were similarly modulated by attention between choice and instruct cue trials. Similar to the case of spatial attention, a willed-attention component (Willed Attention Component, WAC) was isolated during the cue-related choice period by comparing choice and instruct cues. However, pre-cue ongoing alpha oscillations did not predict the color choice (yellow vs blue), as indicated by the chance level decoding accuracy (50%). Overall, our results revealed both similarities and differences between spatial and feature-based willed attention, and thus extended the understanding toward the neural mechanisms of volitional attention.


Subject(s)
Electroencephalography , Evoked Potentials, Visual , Humans , Evoked Potentials/physiology , Cues , Photic Stimulation , Visual Perception/physiology
2.
Hum Brain Mapp ; 45(5): e26672, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38549429

ABSTRACT

Mother-child interaction is highly dynamic and reciprocal. Switching roles in these back-and-forth interactions serves as a crucial feature of reciprocal behaviors while the underlying neural entrainment is still not well-studied. Here, we designed a role-controlled cooperative task with dual EEG recording to explore how differently two brains interact when mothers and children hold different roles. When children were actors and mothers were observers, mother-child interbrain synchrony emerged primarily within the theta oscillations and the frontal lobe, which highly correlated with children's attachment to their mothers (self-reported by mothers). When their roles were reversed, this synchrony was shifted to the alpha oscillations and the central area and associated with mothers' perception of their relationship with their children. The results suggested an observer-actor neural alignment within the actor's oscillations, which was related to the actor-toward-observer emotional bonding. Our findings contribute to the understanding of how interbrain synchrony is established and dynamically changed during mother-child reciprocal interaction.


Subject(s)
Brain , Mothers , Female , Humans , Mothers/psychology , Brain/diagnostic imaging , Frontal Lobe , Mother-Child Relations/psychology , Diencephalon
3.
Neurotherapeutics ; 21(2): e00320, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262102

ABSTRACT

Mirror therapy (MT) has been proposed to promote motor recovery post-stroke through activation of mirror neuron system, recruitment of ipsilateral motor pathways, or/and increasing attention toward the affected limb. However, neuroimaging evidence for these mechanisms is still lacking. To uncover the underlying mechanisms, we designed a randomized controlled study and used a voxel-based whole-brain analysis of resting-state fMRI to explore the brain reorganizations induced by MT. Thirty-five stroke patients were randomized to an MT group (n â€‹= â€‹16) and a conventional therapy (CT) group (n â€‹= â€‹19) for a 4-week intervention. Before and after the intervention, the Fugl-Meyer Assessment Upper Limb subscale (FMA-UL) and resting-state fMRI were collected. A healthy cohort (n â€‹= â€‹16) was established for fMRI comparison. The changes in fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity were analyzed to investigate the impact of intervention. Results showed that greater FMA-UL improvement in the MT group was associated with the compensatory increase of fALFF in the contralesional precentral gyrus (M1) region and the re-establishment of functional connectivity between the bilateral M1 regions, which facilitate motor signals transmission via the ipsilateral motor pathways from the ipsilesional M1, contralesional M1, to the affected limb. A step-wise linear regression model revealed these two brain reorganization patterns collaboratively contributed to FMA-UL improvement. In conclusion, MT achieved motor rehabilitation primarily by recruitment of the ipsilateral motor pathways. Trial Registration Information: http://www.chictr.org.cn. Unique Identifier. ChiCTR-INR-17013644, submitted on December 2, 2017.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Magnetic Resonance Imaging/methods , Mirror Movement Therapy , Stroke/diagnostic imaging , Stroke/therapy , Brain/diagnostic imaging , Efferent Pathways , Recovery of Function/physiology
4.
Biochem Biophys Res Commun ; 692: 149348, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38064999

ABSTRACT

PURPOSE: We studied changes in the choroid, particularly variation in blood flow, during the development of myopia. The hemodynamic mechanism in play remains unclear. We evaluated blood flow by quantitating indocyanine green (ICG) fluorescence in a guinea pig model of form-deprivation myopia. METHODS: Guinea pigs were divided into form-deprivation myopia (FDM) and normal control (NC) groups. Ocular biometric and choroidal hemodynamics parameters were quantitatively derived via ICG imaging, and included the maximal ICG fluorescence intensity (Imax), rising time (Trising), blood flow index (BFI), and mean transit time (MTT). RESULTS: Form deprivation was associated with significant interocular differences in terms of both refractive error and axial length. ICG fluorescence hemodynamic maps of fundal blood flow and vasculature density were evident. In deprived eyes, the fluorescence signals exhibited significantly longer Trising and MTT but lower Imax and BFI than fellow eyes and NC group. The interocular differences in terms of the ocular biometric and hemodynamic parameters were significantly correlated. Hemodynamic analysis of choriocapillaris lobules revealed weakened fluorescence intensity and prolonged arrival and filling times in deprived eyes. Form deprivation reduced the number of lobulated choriocapillaris structures. CONCLUSION: Form-deprivation myopia triggered changes in the hemodynamic and vascular network structures of the choroid and choriocapillaris. The ICG fluorescence imaging/analysis method provides a unique tool for further myopia research.


Subject(s)
Myopia , Refractive Errors , Animals , Guinea Pigs , Diagnostic Imaging , Choroid/diagnostic imaging , Hemodynamics
5.
Article in English | MEDLINE | ID: mdl-38082927

ABSTRACT

Low-intensity ultrasound stimulation (LIUS) is an emerging neuro- and vascular-modulation technique. Studies on humans and animals have shown that LIUS could induce changes in neuronal oscillations or blood flow. However, it is still inconclusive whether the hemodynamic response to LIUS is due to neurovascular coupling (NVC), direct ultrasound-vessel interactions, or both. This study aims to detect the direct effect of LIUS on vessels using optical imaging. Fluorescence images with indocyanine green (ICG) were used to identify and quantify the morphological change in the auricle vessels of rats. Diameters of vessels were measured before, during, and post LIUS. The results indicated that LIUS could significantly increase the vessel diameters (p = 0.031). Further exploratory analysis showed that vessel dilation occurred among the majority of randomly selected vessels (i.e., 21/30 animals (70%), dilation: 6.84±1.95µm, 95% CI: [3.02,10.66]), with a significant confounding effect of the vessel size. The results provided indirect evidence for two distinct pathways in LIUS-based neurovascular modulation, i.e., the NVC and the direct ultrasound-vessel interactions.


Subject(s)
Neurons , Humans , Rats , Animals , Ultrasonography
6.
Article in English | MEDLINE | ID: mdl-38082580

ABSTRACT

Event-related potential (ERP) is one of the commonly used electrophysiologic measures for brain activity with millisecond time resolution, which has been widely applied to psychology and neuroscience research. Conventionally, ERP is obtained by grand-averaging EEG recordings across multiple trials to improve the signal-to-noise ratio (SNR). Reliable quantitative analysis of the amplitude or latency of ERP requires sufficient SNR. Estimating SNR thus offers a criterion for selecting the trial number in designing experiments and the ERP analysis. Unfortunately, most researchers miss assessing SNR, which leads to the reliability of the results being unchecked, particularly under a low SNR. Although a few SNR estimates for ERP have been proposed, their performances have not yet been well compared. As a result, researchers are still left without a guideline quantifying the quality of their ERP signals. An SNR estimate is considered superior if it more successfully differentiates the difference in noises. Using both simulated and actual ERP components, in this study, we aimed to compare the performances of four SNR estimates. The area under the curve (AUC) was computed from the receiver operating characteristics (ROC) curves to quantify the performances of the SNR estimates in Task I: classifying ERP and spontaneous EEG and Task II: classifying the ERP with different levels of noises. Our results showed that the SNR estimate by calculating the ratio of the highest amplitude in the ERPs to the standard deviation in the baseline time interval (SNRMaidhof) was outstanding in Task I. While the SNR estimate by dividing the mean root square of the signal by the variance of the baseline (SNRM&P) was the best SNR estimate in Task II. These results provided a guideline for assessing the quality of the ERP, excluding experimental subjects, or designing the number of required trials before the quantitative analysis.Clinical Relevance- This study provides the rules of thumb for quantifying the ERP data quality, screening the subjects and designing the number of trials in ERP experiments.


Subject(s)
Electroencephalography , Evoked Potentials , Humans , Electroencephalography/methods , Signal-To-Noise Ratio , Reproducibility of Results , Evoked Potentials/physiology , Computer Simulation
7.
Article in English | MEDLINE | ID: mdl-38083543

ABSTRACT

Mirror visual feedback (MVF) intervention is an adjunctive approach for motor recovery after stroke. It has been hypothesized that MVF can increase visual perception, motor imagery, and attention of/to the hands. However, neuroimaging evidence for this hypothesis is still lacking. In this study, we used a hand mental rotation task and event-related potential (ERP) analysis to explore the effect of MVF intervention on visual perception, motor preparation, and motor imagery of hands. We recruited 46 patients and randomly divided them into a mirror visual feedback group (MG) and a conventional intervention group (CG). By comparing ERP amplitude between the two groups and between before and after the intervention, we found that the N200 component, which was considered to be related to motor preparation, was significantly less negative in the affected hemisphere than that in the unaffected counterpart. After intervention, the N200 amplitude became more negative, reflecting a recovery of motor preparation. Specifically, MG showed a significant effect on the N200 for the hand pictures at large orientations, while the CG showed an effect mainly for the upright hand stimuli. The results suggested an improvement of preparation for motor imagery of complex and precise hand movements after MVF intervention.Clinical Relevance- This study might be helpful for understanding the neural mechanisms of MVF which can help stroke patients regain upper extremity function.


Subject(s)
Feedback, Sensory , Stroke , Humans , Evoked Potentials , Hand , Stroke/therapy , Upper Extremity
8.
Cereb Cortex ; 33(22): 11112-11125, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37750338

ABSTRACT

Electroencephalography alpha-band (8-13 Hz) activity during visual spatial attention declines in normal aging. We recently reported the impacts of pre-cue baseline alpha and cueing strategy on post-cue anticipatory alpha activity and target processing in visual spatial attention (Wang et al., Cerebral Cortex, 2023). However, whether these factors affected aging effects remains unaddressed. We investigated this issue in two independent experiments (n = 114) with different cueing strategies (instructional vs. probabilistic). When median-splitting young adults (YA) by their pre-cue alpha power, we found that older adults exhibited similar pre-cue and post-cue alpha activity as YA with lower pre-cue alpha, and only YA with higher pre-cue alpha showed significant post-cue alpha activity, suggesting that diminished anticipatory alpha activity was not specific to aging but likely due to a general decrease with baseline alpha. Moreover, we found that the aging effects on cue-related event-related potentials were dependent on cueing strategy but were relatively independent of pre-cue alpha. However, age-related deficits in target-related N1 attentional modulation might depend on both pre-cue alpha and cueing strategy. By considering the impacts of pre-cue alpha and cueing strategy, our findings offer new insights into age-related deficits in anticipatory alpha activity and target processing during visual spatial attention.


Subject(s)
Attention , Cues , Young Adult , Humans , Aged , Reaction Time , Electroencephalography , Evoked Potentials , Visual Perception
9.
Physiol Behav ; 271: 114341, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37660775

ABSTRACT

The ability of attentional orienting has been suggested to keep developing throughout childhood. Electroencephalography (EEG) studies have shown that 6-10 year old children exhibit lateralized alpha-band (8-13 Hz) activity and event-related potentials (ERPs) that are classic markers of spatial attentional orienting in adults. However, the lack of a direct comparison of these EEG correlates between children and adults in the same experiment made it difficult to evaluate developmental effects on neural activity throughout attentional stages. This study aimed to directly compare cue-related alpha activity and ERPs for the anticipatory attention stage and target-related ERPs for the target processing stage between healthy children and adults. Participants, including 19 children (6-10 years) and 23 adults (18-34 years), successfully completed a visual spatial attention task, although children responded more slowly and less consistently than adults. Both age groups exhibited significant cue-related alpha lateralization and ERPs (EDAN, ADAN, and LDAP) during anticipatory attention and significant attentional modulation of target-related N1 during target processing. However, no significant difference was found in the magnitude of attentional modulation of these EEG correlates between children and adults. These findings suggest that the neural underpinnings of anticipatory attention and target processing during visual spatial attention could have been largely developed in 6-10 year old children.

10.
Opt Lett ; 48(11): 2913-2916, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262242

ABSTRACT

Transmissive laser speckle imaging (LSI) is useful for monitoring large field-of-view (FOV) blood flow in thick tissues. However, after longer transmissions, the contrast of the transmitted speckle images is more likely to be blurred by multiple scattering, resulting in decreased accuracy and spatial resolution of deep vessels. This study proposes a deep-learning-based strategy for high spatiotemporal resolution three-dimensional (3D) reconstruction from a single transilluminated laser speckle contrast image, providing more structural and functional details without multifocus two-dimensional (2D) imaging or 3D optical imaging with point/line scanning. Based on the correlation transfer equation, a large training dataset is generated by convolving vessel masks with depth-dependent point spread functions (PSF). The UNet and ResNet are used for deblurring and depth estimation. The blood flow in the reconstructed 3D vessels is estimated by a depth-dependent contrast model. The proposed method is evaluated with simulated data and phantom experiments, achieving high-fidelity structural reconstruction with a depth-independent estimation of blood flow. This fast 3D blood flow imaging technique is suitable for real-time monitoring of thick tissue and the diagnosis of vascular diseases.


Subject(s)
Deep Learning , Hemodynamics , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Lasers
11.
Cereb Cortex ; 33(16): 9504-9513, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37376787

ABSTRACT

The efficacy of motor imagery training for motor recovery is well acknowledged, but with substantial inter-individual variability in stroke patients. To help optimize motor imagery training therapy plans and screen suitable patients, this study aimed to explore neuroimaging biomarkers explaining variability in treatment response. Thirty-nine stroke patients were randomized to a motor imagery training group (n = 22, received a combination of conventional rehabilitation therapy and motor imagery training) and a control group (n = 17, received conventional rehabilitation therapy and health education) for 4 weeks of interventions. Their demography and clinical information, brain lesion from structural MRI, spontaneous brain activity and connectivity from rest fMRI, and sensorimotor brain activation from passive motor task fMRI were acquired to identify prognostic factors. We found that the variability of outcomes from sole conventional rehabilitation therapy could be explained by the reserved sensorimotor neural function, whereas the variability of outcomes from motor imagery training + conventional rehabilitation therapy was related to the spontaneous activity in the ipsilesional inferior parietal lobule and the local connectivity in the contralesional supplementary motor area. The results suggest that additional motor imagery training treatment is also efficient for severe patients with damaged sensorimotor neural function, but might be more effective for patients with impaired motor planning and reserved motor imagery.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Prognosis , Recovery of Function/physiology , Stroke/diagnostic imaging , Stroke/therapy , Stroke/pathology , Neuroimaging , Magnetic Resonance Imaging/methods
12.
Biomed Opt Express ; 14(4): 1480-1493, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37078051

ABSTRACT

Laser speckle contrast imaging (LSCI) provides full-field and label-free imaging of blood flow and tissue perfusion. It has emerged in the clinical environment, including the surgical microscope and endoscope. Although traditional LSCI has been improved in resolution and SNR, there are still challenges in clinical translations. In this study, we applied a random matrix description for the statistical separation of single and multiple scattering components in LSCI using a dual-sensor laparoscopy. Both in-vitro tissue phantom and in-vivo rat experiments were performed to test the new laparoscopy in the laboratory environment. This random matrix-based LSCI (rmLSCI) provides the blood flow and tissue perfusion in superficial and deeper tissue respectively, which is particularly useful in intraoperative laparoscopic surgery. The new laparoscopy provides the rmLSCI contrast images and white light video monitoring simultaneously. Pre-clinical swine experiment was also performed to demonstrate the quasi-3D reconstruction of the rmLSCI method. The quasi-3D ability of the rmLSCI method shows more potential in other clinical diagnostics and therapies using gastroscopy, colonoscopy, surgical microscope, etc.

13.
IEEE Trans Biomed Eng ; 70(7): 1992-2001, 2023 07.
Article in English | MEDLINE | ID: mdl-37018313

ABSTRACT

OBJECTIVE: Here we investigate the ability of low-intensity ultrasound (LIUS) applied to the spinal cord to modulate the transmission of motor signals. METHODS: Male adult Sprague-Dawley rats (n = 10, 250-300 g, 15 weeks old) were used in this study. Anesthesia was initially induced with 2% isoflurane carried by oxygen at 4 L/min via a nose cone. Cranial, upper extremity, and lower extremity electrodes were placed. A thoracic laminectomy was performed to expose the spinal cord at the T11 and T12 vertebral levels. A LIUS transducer was coupled to the exposed spinal cord, and motor evoked potentials (MEPs) were acquired each minute for either 5- or 10-minutes of sonication. Following the sonication period, the ultrasound was turned off and post-sonication MEPs were acquired for an additional 5 minutes. RESULTS: Hindlimb MEP amplitude significantly decreased during sonication in both the 5- (p < 0.001) and 10-min (p = 0.004) cohorts with a corresponding gradual recovery to baseline. Forelimb MEP amplitude did not demonstrate any statistically significant changes during sonication in either the 5- (p = 0.46) or 10-min (p = 0.80) trials. CONCLUSION: LIUS applied to the spinal cord suppresses MEP signals caudal to the site of sonication, with recovery of MEPs to baseline after sonication. SIGNIFICANCE: LIUS can suppress motor signals in the spinal cord and may be useful in treating movement disorders driven by excessive excitation of spinal neurons.


Subject(s)
Evoked Potentials, Motor , Spinal Cord Injuries , Rats , Animals , Male , Evoked Potentials, Motor/physiology , Rats, Sprague-Dawley , Spinal Cord/physiology , Spine , Evoked Potentials
14.
IEEE Trans Biomed Eng ; 70(7): 2080-2090, 2023 07.
Article in English | MEDLINE | ID: mdl-37018593

ABSTRACT

OBJECTIVE: Various EEG source localization methods have been proposed for functional brain research. The evaluation and comparison of these methods are usually based on simulated data but not real EEG data, as the ground truth of source localization is unknown. In this study, we aim to evaluate source localization methods quantitatively under the real situation. METHODS: We examined the test-retest reliability of the source signals reconstructed from a public six-session EEG data of 16 subjects performing face recognition tasks by five mainstream methods, including weighted minimum norm estimation (WMN), dynamical Statistical Parametric Mapping (dSPM), Standardized LOw Resolution brain Electromagnetic TomogrAphy (sLORETA), dipole modeling and linearly constrained minimum variance (LCMV) beamformers. All methods were evaluated in terms of peak localization reliability and amplitude reliability of source signals. RESULTS: In the two brain regions responsible for static face recognition, all methods have promising peak localization reliability, with WMN showing the smallest peak dipole distance between session pairs. The spatial stability of source localization in the familiar face condition is better than those in the unfamiliar face and the scrambled face conditions in the face recognition areas in the right hemisphere. In addition, the test-retest reliability of source amplitude by all methods is good to excellent under the familiar face condition. CONCLUSION: Stable and reliable results for source localization can be obtained in the presence of evident EEG effects. Due to different levels of a priori knowledge, different source localization methods have different applicable scenarios. SIGNIFICANCE: These findings provide new evidence for the validity of source localization analysis and a new perspective for the evaluation of source localization methods on real EEG data.


Subject(s)
Brain , Electroencephalography , Humans , Reproducibility of Results , Electroencephalography/methods , Head , Brain Mapping/methods
16.
J Neural Eng ; 20(1)2023 02 02.
Article in English | MEDLINE | ID: mdl-36669203

ABSTRACT

Background. Low-intensity transcranial ultrasound stimulation (TUS) could induce both immediate and long-lasting neuromodulatory effects in human brains. Interhemispheric imbalance at prefrontal or motor cortices generally associates with various cognitive decline in aging and mental disorders. However, whether TUS could modulate the interhemispheric balance of excitability in human brain remains unknown.Objective. This study aims to explore whether repetitive TUS (rTUS) intervention can modulate the interhemispheric balance of excitability between bilateral motor cortex (M1) in healthy subjects.Approach. Motor evoked potentials (MEPs) at bilateral M1 were measured at 15 min and 0 min before a 15 min active or sham rTUS intervention on left M1 and at 0 min, 15 min and 30 min after the intervention, and the Chinese version of brief neurocognitive test battery (C-BCT) was conducted before and after the intervention respectively. Cortical excitability was quantified by MEPs, and the long-lasting changes of MEP amplitude was used as an index of plasticity.Results. In the active rTUS group (n= 20), the ipsilateral MEP amplitude increased significantly compared with baselines and lasted for up to 30 min after intervention, while the contralateral MEP amplitude decreased lasting for 15 min, yielding increased laterality between bilateral MEPs. Furthermore, rTUS intervention induced changes in some C-BCT scores, and the changes of scores correlated with the changes of MEP amplitudes induced by rTUS intervention. The sham rTUS group (n= 20) showed no significant changes in MEPs and C-BCT scores. In addition, no participants reported any adverse effects during and after the rTUS intervention, and no obvious temperature increase appeared in skull or brain tissues in simulation.Significance. rTUS intervention modulated the plasticity of ipsilateral M1 and the interhemispheric balance of M1 excitability in human brain, and improved cognitive performance, suggesting a considerable potential of rTUS in clinical interventions.


Subject(s)
Mental Disorders , Motor Cortex , Humans , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology , Functional Laterality/physiology
17.
CNS Neurosci Ther ; 29(2): 619-632, 2023 02.
Article in English | MEDLINE | ID: mdl-36575865

ABSTRACT

BACKGROUND: Motor imagery training (MIT) has been widely used to improve hemiplegic upper limb function in stroke rehabilitation. The effectiveness of MIT is associated with the functional neuroplasticity of the motor network. Currently, brain activation and connectivity changes related to the motor recovery process after MIT are not well understood. AIM: We aimed to investigate the neural mechanisms of MIT in stroke rehabilitation through a longitudinal intervention study design with task-based functional magnetic resonance imaging (fMRI) analysis. METHODS: We recruited 39 stroke patients with moderate to severe upper limb motor impairment and randomly assigned them to either the MIT or control groups. Patients in the MIT group received 4 weeks of MIT therapy plus conventional rehabilitation, while the control group only received conventional rehabilitation. The assessment of Fugl-Meyer Upper Limb Scale (FM-UL) and Barthel Index (BI), and fMRI scanning using a passive hand movement task were conducted on all patients before and after treatment. The changes in brain activation and functional connectivity (FC) were analyzed. Pearson's correlation analysis was conducted to evaluate the association between neural functional changes and motor improvement. RESULTS: The MIT group achieved higher improvements in FM-UL and BI relative to the control group after the treatment. Passive movement of the affected hand evoked an abnormal bilateral activation pattern in both groups before intervention. A significant Group × Time interaction was found in the contralesional S1 and ipsilesional M1, showing a decrease of activation after intervention specifically in the MIT group, which was negatively correlated with the FM-UL improvement. FC analysis of the ipsilesional M1 displayed the motor network reorganization within the ipsilesional hemisphere, which correlated with the motor score changes. CONCLUSIONS: MIT could help decrease the compensatory activation at both hemispheres and reshape the FC within the ipsilesional hemisphere along with functional recovery in stroke patients.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Recovery of Function/physiology , Stroke/diagnostic imaging , Stroke/therapy , Upper Extremity
18.
Cereb Cortex ; 33(7): 4056-4069, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36005905

ABSTRACT

The electroencephalography alpha-band (8-13 Hz) activity may represent a crucial neural substrate of visual spatial attention. However, factors likely contributing to alpha activity have not been adequately addressed, which impedes understanding its functional roles. We investigated whether pre-cue alpha power was associated with post-cue alpha activity in 2 independent experiments (n = 30 each) with different cueing strategies (instructional vs. probabilistic) by median-splitting subjects (between-subject) or trials (within-subject) according to pre-cue alpha. In both experiments, only subjects with higher pre-cue alpha showed significant post-cue alpha desynchronization and alpha lateralization, while whether trials had higher or lower pre-cue alpha affected post-cue alpha desynchronization but not alpha lateralization. Furthermore, significant attentional modulation of target processing indexed by N1 component was observed in subjects and trials regardless of higher or lower pre-cue alpha in the instructional cueing experiment. While in the probabilistic cueing experiment, N1 attentional modulation was only observed in higher pre-cue alpha subjects and lower pre-cue alpha trials. In summary, by demonstrating the effects of pre-cue alpha and cueing strategy on post-cue alpha activity and target processing, our results suggest the necessity of considering these 2 contributing factors when investigating the functional roles of alpha activity in visual spatial attention.


Subject(s)
Attention , Cues , Humans , Electroencephalography , Reaction Time
19.
Brain Connect ; 13(3): 133-142, 2023 04.
Article in English | MEDLINE | ID: mdl-36082989

ABSTRACT

Background: Recent neuroimaging studies on upper-limb amputation have revealed the reorganization of bilateral sensorimotor cortex after sensory deprivation, underpinning the assumption of changes in the interhemispheric connections. In the present study, using functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we aim to explore the alterations in the interhemispheric functional and structural connectivity after upper-limb amputation. Methods: Twenty-two upper-limb amputees and 15 age- and sex-matched healthy controls were recruited for MRI scanning. The amputees were further divided into subgroups by amputation side and residual limb pain (RLP). DTI metrics of corpus callosum (CC) subregions and resting-state functional connectivity (FC) between the bilateral sensorimotor cortices were measured for each participant. Linear mixed models were carried out to investigate the relationship of interhemispheric connectivity with the amputation, amputation side, and RLP. Results: Compared with healthy controls, upper-limb amputees showed lower axial diffusivity (AD) in CC subregions II and III. Subgroup analyses showed that the dominant hand amputation induced significant microstructural changes in CC subregion III. In addition, only amputees with RLP showed decreased fractional anisotropy and AD in CC, which was also correlated with the intensity of RLP. No significant changes in interhemispheric FC were found after upper-limb amputation. Conclusion: The present study demonstrated that the interhemispheric structural connectivity rather than FC degenerated after upper-limb amputation, and the degeneration of interhemispheric structural connectivity was shown to be relevant to the amputation side and the intensity of RLP. Impact statement Neuroimaging studies have revealed the functional reorganization of bilateral sensorimotor cortex after amputation, with expanded activation from the intact hemisphere to the deprived hemisphere. Our findings indicated a degeneration of interhemispheric white matter connections in upper-limb amputees, unveiling the underlying structural basis for bilateral functional reorganization after amputation.


Subject(s)
Diffusion Tensor Imaging , Sensorimotor Cortex , Humans , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/methods , Amputation, Surgical , Corpus Callosum/diagnostic imaging , Corpus Callosum/surgery , Upper Extremity
20.
Biomed Opt Express ; 13(5): 2881-2895, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35774341

ABSTRACT

Random matrix theory provides new insights into multiple scattering in random media. In a recent study, we demonstrated the statistical separation of single- and multiple-scattering components based on a Wishart random matrix. The first- and second-order moments were estimated with a Wishart random matrix constructed using dynamically backscattered speckle images. In this study, this new strategy was applied to laser speckle contrast imaging (LSCI) of in vivo blood flow. The random matrix-based method was adopted and parameterized using electric field Monte Carlo simulations and in vitro blood flow phantom experiments. The new method was further applied to in vivo experiments, demonstrating the benefits of separating the single- and multiple-scattering components, and the method was compared with the traditional temporal laser speckle contrast analysis (LASCA) method. More specifically, the new method separates the stimulus-induced functional changes in blood flow and tissue perfusion in the superficial (<2l t , l t is the transport mean free path) and deep layers (1l t ∼ 7l t ), extending LSCI to the evaluation of functional and pathological changes.

SELECTION OF CITATIONS
SEARCH DETAIL
...