Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(13): 11422-11429, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35415332

ABSTRACT

Flexible operation of large-scale boilers for electricity generation is essential in modern power systems. An accurate prediction of boiler steam temperature is of great importance to the operational efficiency of boiler units to prevent the occurrence of overtemperature. In this study, a dense, residual long short-term memory network (LSTM)-attention model is proposed for steam temperature prediction. In particular, the residual elements in the proposed model have a great advantage in improving the accuracy by adding short skip connections between layers. To provide overall information for the steam temperature prediction, uncertainty analysis based on the proposed model is performed to quantify the uncertainties in steam temperature variations. Our results demonstrate that the proposed method exhibits great performance in steam temperature prediction with a mean absolute error (MAE) of less than 0.6 °C. Compared to algorithms such as support-vector regression (SVR), ridge regression (RIDGE), the recurrent neural network (RNN), the gated recurrent unit (GRU), and LSTM, the prediction accuracy of the proposed model outperforms by 32, 16, 12, 10, and 11% in terms of MAE, respectively. According to our analysis, the dense residual LSTM-attention model is shown to provide an accurate early warning of overtemperature, enabling the development of real-time steam temperature control.

2.
Sensors (Basel) ; 22(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35062518

ABSTRACT

Due to planetary movement of planet gears, the vibration signal perceived by a stationary sensor is modulated and difficult to diagnose. This paper proposed a vibration separation methodology compensated by a time-varying transfer function (TVTF-VS), which is a further development of the vibration separation (VS) method in the diagnosis of non-hunting tooth planetary gearboxes. On the basis of VS, multi-teeth VS is proposed to extract and synthesize the meshing signal of a planet gear using a single transducer. Considering the movement regularity of a planetary gearbox, the time-varying transfer function (TVTF) is represented by a generalized expression. The TVTF is constructed using a segment of healthy signal and an evaluation indicator is established to optimize the parameters of the TVTF. The constructed TVTF is applied to overcome the amplitude modulation effect and highlight fault characteristics. After that, experiments with baseline, pitting, and compound localized faults planet gears were conducted on a non-hunting tooth planetary gearbox test rig, respectively. The results demonstrate that incipient failure on a planet gear can be detected effectively, and relative location of the local faults can be determined accurately.


Subject(s)
Planets , Vibration , Physical Therapy Modalities , Transducers
3.
Sensors (Basel) ; 21(5)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33800102

ABSTRACT

As an essential part of the transmission system, gearboxes are considered as a major source of vibration. Signal identification of gear vibration is necessary for online monitoring of the mechanical systems. However, in engine-gearbox systems, the ignition impact of the engine is strong, so that the gear vibration is generally submerged. To overcome this issue, the resonance-based signal sparse decomposition (RSSD) method is used in this paper based on different oscillatory behaviors of the gear meshing impact and the engine ignition impact. To improve the accuracy of RSSD under interferences, the meshing frequency energy ratio (MF-ER) index is introduced into RSSD to adaptively choose the decomposition parameters. Before applying the RSSD method, the auto-regression (AR) model is used as a pre-whitening step to eliminate the normal gear meshing vibration, which improves the decomposition performance of RSSD. The effectiveness of the proposed AR-ORSSD (AR-based optimized RSSD) algorithm is tested using both simulated signals and measured vibration signals from an engine-gearbox system in a forklift. Comparisons were made with the RSSD algorithm based on a genetic algorithm. Experimental results indicate that the AR-ORSSD algorithm is superior at identifying gear vibration signals especially when under strong interferences.

4.
Materials (Basel) ; 14(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451148

ABSTRACT

The rolling contact fatigue of gear surfaces in a heavy loader gearbox is investigated under various working conditions using the critical plane-based multiaxial Fatemi-Socie criterion. The mechanism for residual stress to increase the fatigue initiation life is that the compressive residual stress has a negative normal component on the critical plane. Based on this mechanism, the genetic algorithm is used to search the optimum residual stress distribution that can maximize the fatigue initiation life for a wide range of working conditions. The optimum residual stress distribution is more effective in increasing the fatigue initiation life when the friction coefficient is larger than its critical value, above which the fatigue initiation moves from the subsurface to the surface. Finally, the effect on the fatigue initiation life when the residual stress distribution deviates from the optimum distribution is analyzed. A sound physical explanation for this effect is provided. This yields a useful guideline to design the residual stress distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...