Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 16(20): 3898-3908, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27722715

ABSTRACT

Although hepatocytes in vivo experience intra-abdominal pressure (IAP), pressure is typically not incorporated in hepatocyte culture systems. The cuboidal cell shape and extent of intercellular contact between cultured hepatocytes are critical parameters that influence the differentiated hepatic phenotype. Using a microfluidic device, the application of pressure to artificially compact cells and forge cell-cell interactions was previously demonstrated to be effective in accelerating hepatic repolarization. In seeking to implement this approach to higher throughput culture platforms for potential drug screening applications, we specifically designed a vertical-flow compaction bioreactor array (VCBA) that compacts hepatocytes within the range of IAP and portal pressure in vivo in a multi-well setup. As a result of vertical perfusion-generated forces, hepatocytes not only exhibited accelerated repolarization, an in vivo-like cuboidal morphology, but also better maintained hepatic functions in long-term culture as compared to the same cells cultured under static conditions. As a novel engineering tool to modulate cell compaction and intercellular interactions, this platform is a promising approach to confer tight control over hepatocyte repolarization for in vitro culture.


Subject(s)
Bioreactors , Cell Polarity , Hepatocytes/cytology , Tissue Array Analysis/instrumentation , Animals , Male , Perfusion , Rats , Rats, Wistar
2.
Biomaterials ; 80: 106-120, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26708088

ABSTRACT

Liver-specific functions in primary hepatocytes can be maintained over extended duration in vitro using spheroid culture. However, the undesired loss of cells over time is still a major unaddressed problem, which consequently generates large variations in downstream assays such as drug screening. In static culture, the turbulence generated by medium change can cause spheroids to detach from the culture substrate. Under perfusion, the momentum generated by Stokes force similarly results in spheroid detachment. To overcome this problem, we developed a Constrained Spheroids (CS) culture system that immobilizes spheroids between a glass coverslip and an ultra-thin porous Parylene C membrane, both surface-modified with poly(ethylene glycol) and galactose ligands for optimum spheroid formation and maintenance. In this configuration, cell loss was minimized even when perfusion was introduced. When compared to the standard collagen sandwich model, hepatocytes cultured as CS under perfusion exhibited significantly enhanced hepatocyte functions such as urea secretion, and CYP1A1 and CYP3A2 metabolic activity. We propose the use of the CS culture as an improved culture platform to current hepatocyte spheroid-based culture systems.


Subject(s)
Cell Culture Techniques/instrumentation , Hepatocytes/cytology , Spheroids, Cellular/cytology , Animals , Cell Polarity , Cell Survival , Cells, Cultured , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Drug Evaluation, Preclinical/instrumentation , Equipment Design , Hepatocytes/metabolism , Humans , Male , Membranes, Artificial , Perfusion/instrumentation , Polymers/chemistry , Rats , Rats, Wistar , Spheroids, Cellular/metabolism , Xylenes/chemistry
3.
Biomaterials ; 33(7): 2165-76, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22189144

ABSTRACT

Hepatocyte spheroids mimic many in vivo liver-tissue phenotypes but increase in size during extended culture which limits their application in drug testing applications. We have developed an improved hepatocyte 3D spheroid model, namely tethered spheroids, on RGD and galactose-conjugated membranes using an optimized hybrid ratio of the two bioactive ligands. Cells in the spheroid configuration maintained 3D morphology and uncompromised differentiated hepatocyte functions (urea and albumin production), while the spheroid bottom was firmly tethered to the substratum maintaining the spheroid size in multi-well plates. The oblate shape of the tethered spheroids, with an average height of 32 µm, ensured efficient nutrient, oxygen and drug access to all the cells within the spheroid structure. Cytochrome P450 induction by prototypical inducers was demonstrated in the tethered spheroids and was comparable or better than that observed with hepatocyte sandwich cultures. These data suggested that tethered 3D hepatocyte spheroids may be an excellent alternative to 2D hepatocyte culture models for drug safety applications.


Subject(s)
Drug Evaluation, Preclinical/methods , Hepatocytes/cytology , Models, Biological , Spheroids, Cellular/physiology , Animals , Cells, Cultured , Collagen/metabolism , Hepatocytes/physiology , Humans , Male , Rats , Rats, Wistar , Spheroids, Cellular/cytology
4.
Biomicrofluidics ; 5(2): 22203, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21799710

ABSTRACT

There are a plethora of approaches to construct microtissues as building blocks for the repair and regeneration of larger and complex tissues. Here we focus on various physical and chemical trapping methods for engineering three-dimensional microtissue constructs in microfluidic systems that recapitulate the in vivo tissue microstructures and functions. Advances in these in vitro tissue models have enabled various applications, including drug screening, disease or injury models, and cell-based biosensors. The future would see strides toward the mesoscale control of even finer tissue microstructures and the scaling of various designs for high throughput applications. These tools and knowledge will establish the foundation for precision engineering of complex tissues of the internal organs for biomedical applications.

5.
Int J Mol Sci ; 10(12): 5411-5441, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20054478

ABSTRACT

Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-incompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-incompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented.


Subject(s)
Biocompatible Materials/chemistry , Cell Culture Techniques , Micro-Electrical-Mechanical Systems , Animals , Cell Adhesion , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...